• Title/Summary/Keyword: Electrochemical Detection

검색결과 341건 처리시간 0.028초

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja;Ren, Shuo;Lee, Sang Wook;Kim, Joon-Ki;Shin, Hye-su;Jeong, OK-Chan;Kim, Soyoun;Lee, Dong-Ki
    • Molecules and Cells
    • /
    • 제39권11호
    • /
    • pp.807-813
    • /
    • 2016
  • Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.

Application of HPLC with Electrochemical Detection to Assaying Tyrosine Hydroxylase Activity and Dopamine Content in Dissociated Cultures of Fetal Rat Brainstem (흰쥐 태 뇌간의 세포배양에서 HPLC-전기화학검출을 이용한 Tyrosine Hydroxylase 활성 및 Dopamine의 정량)

  • Song, Dong-Keun;Wie, Myung-Bok;Park, Chan-Woong;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • 제27권1호
    • /
    • pp.7-12
    • /
    • 1991
  • We measured the developmental increase of tyrosine hydroxylase(TH) activity and dopamine content with high performance liquid chromatography with electrochemical detection(HPLC-EC) in dissociated cultures of fetal rat brainstem(E14). TH activity and dopamine content increased progressively upto 7 days in vitro, when the effects of various drugs on the dopamine contents were studied. ${\alpha}-Methyl-p-tyrosine$, a TH inhibitor and NSD-1015, an inhibitor of aromatic amiono acid decarboxylase effectively depleted dopamine contents. Dopamine contents were depleted by reserpine and increased by pargyline. When cultures grown for 1 week in control medium were then exposed to tetrodotoxin$(0.1\;{\mu}M$) for 7 days, exposure to tetrodotoxin markedly decreased TH activity. All the above results indicate that dopamine metabolism in the cultered cells reflect reliably the property of brain dopamine metabolism. We suggest that measuring TH activity and dopamine content in brainstem culture with HPLC-EC can be useful tool in the study of pharmacology as well as toxicology of the central dopaminergic system.

  • PDF

Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles

  • Giribabu, Krishnan;Jang, Sung-Chan;Haldorai, Yuvaraj;Rethinasabapathy, Muruganantham;Oh, Seo Yeong;Rengaraj, Arunkumar;Han, Young-Kyu;Cho, Wan-Seob;Roh, Changhyun;Huh, Yun Suk
    • Carbon letters
    • /
    • 제23권
    • /
    • pp.38-47
    • /
    • 2017
  • In this study, magnetite ($Fe_3O_4$) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like $Fe_3O_4$ nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The $Fe_3O_4/GCE$ was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the $Fe_3O_4/GCE$ was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the $Fe_3O_4/GCE$. The electrocatalytic ability of $Fe_3O_4$ was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the $Fe_3O_4/GCE$ exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of $0.09-47{\mu}M$ with a correlation coefficient of 0.9919 and a limit of detection of $0.09{\mu}M$ (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.

Development of Photo-diode for LOC fluorescence detector (LOC 형광검출 소자를 위한 광 다이오드의 제작 및 특성 평가)

  • Kim, Ju-Hwan;Shin, Kyeong-Sik;Kim, Yong-Kook;Kim, Sang-Sik;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.100-103
    • /
    • 2003
  • Signal detection technologies such as fluorescence, charge and electrochemical detection used in the monolithic capillary electrophoresis system to convert the biochemical reaction into the electrical signal. The fluorescence detection using photodiodes that measure fluorescence emitted from eluting molecules is widely used for the monolithic capillary electrophoresis system. In this paper, in order to fabricate a photosensor has the increased sensitivity, we investigated on the sensitivity of general type and p-i-n type diode. The p-i-n diode has higher sensitivity than photodiode. Considering these results, we fabricated p-i-n diodes on the high resistive$(4k{\Omega}{\cdot}cm)$ wafer into rectangle and finger pattern and compared internal resistance of each pattern. The internal resistance of p-i-n diode can be decreased by the application of finger pattern has parallel resistance structure from $571{\Omega}$ to $393{\Omega}$.

  • PDF

Simultaneous Detection of Cd (II), Pb (II), Cu (II), and Hg (II) Ions in Dye Waste Water Using a Boron Doped Diamond Electrode with DPASV

  • Yoon, Jang-Hee;Yang, Jee-Eun;Kim, Jong-Phil;Bae, Jong-Seong;Shim, Yoon-Bo;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권1호
    • /
    • pp.140-145
    • /
    • 2010
  • The simultaneous detection of Cd (II), Pb (II), Cu (II), and Hg (II) ions in aqueous medium using a BDD electrode with DPASV is described. XPS was used to characterize the chemical states of trace metal ions deposited on the BDD electrode surface. Experimental parameters that affect response, such as pH, deposition time, deposition potential, and pulse amplitude were carefully optimized. The detection limits for Cd (II), Pb (II), Cu (II), and Hg (II) ions were 3.5 ppb, 2.0 ppb, 0.1 ppb and 0.7 ppb, respectively. The application of the BDD electrode on the electrochemical pretreatment for the simultaneous metal detection in the dye waste water was also investigated.

Amperometric Detection of Hydroquinone and Homogentisic Acid with Laccase Immobilized Platinum Electrode

  • Quan, De;Shin, Woon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권6호
    • /
    • pp.833-837
    • /
    • 2004
  • DeniLite$^{TM}$ laccase immobilized platinum electrode was used for amperometric detection of hydroquinone (HQ) and homogentisic acid (HGA) by means of substrate recycling. In case of HQ, the obtained sensitivity is 280 nA/ ${\mu}$M with linear range of 0.2-35 ${\mu}$M ($r^2$ = 0.998) and detection limit (S/N = 3) of 50 nM. This high sensitivity can be attributed to chemical amplification due to the cycling of the substrate caused by enzymatic oxidation and following electrochemical regeneration. In case of HGA, the obtained sensitivity is 53 nA/ ${\mu}$M with linear range of 1-50 $[\mu}M\;(r^2$ = 0.999) and detection limit of 0.3 ${\mu}$M. The response times ($t_{90%}$) are about 2 seconds for the two substrates and the long-term stability is 60 days for HQ and around 40-50 days for HGA with retaining 80% of initial activities. The very fast response and the durable long-term stability are the principal advantages of this sensor. pH studies show that optimal pH of the sensor for HQ is 6.0 and that for HGA is 4.5-5.0. This shift of optimal pH towards acidic range for HGA can be attributed to the balance between enzyme activity and accessibility of the substrate to the active site of the enzyme.

Mass Spectrometry-Based Analytical Methods of Amatoxins in Biological Fluids to Monitor Amatoxin-Induced Mushroom Poisoning

  • Choi, Jin-Sung;Lee, Hye Suk
    • Mass Spectrometry Letters
    • /
    • 제13권4호
    • /
    • pp.95-105
    • /
    • 2022
  • Amatoxin-induced mushroom poisoning starts with nonspecific symptoms of toxicity but hepatic damage may follow, resulting in the rapid development of liver insufficiency and, ultimately, coma and death. Accurate detection of amatoxins, such as α-, β-, and γ-amanitin, within the first few hours after presentation is necessary to improve the therapeutic outcomes of patients. Therefore, analytical methods for the identification and quantification of α-, β-, and γ-amanitin in biological samples are necessary for clinical and forensic toxicology. This study presents a literature review of the analytical techniques available for amatoxin detection in biological matrices, and established an inventory of liquid chromatography (LC) techniques with mass spectrometry (MS), ultraviolet (UV) detection, and electrochemical detection (ECD). LC-MS methods using quadrupole tandem mass spectrometry, time-of-flight mass spectrometry, and orbitrap MS are powerful analytical techniques for the identification and determination of amatoxins in plasma, urine, serum, and tissue samples, with high sensitivity, specificity, and reproducibility compared to LC with UV and ECD, enzyme-linked immunoassay, and capillary electrophoresis methods.

Indicator-free DNA Chip Array Using an Electrochemical System

  • Park, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.133-136
    • /
    • 2004
  • This research aims to develop a DNA chip array without an indicator. We fabricated a microelectrode array through photolithography technology. Several DNA probes were immobilized on an electrode. Then, target DNA was hybridized and measured electrochemically. Cyclic-voltammograms (CVs) showed a difference between the DNA probe and mismatched DNA in an anodic peak. This indicator-free DNA chip resulted in a sequence-specific detection of the target DNA.

Integrated Type DNA Chip Array and Gene Detection Using an Indicator-free DNA (집적형 DNA칩 어레이 및 비수식화 DNA를 이용한 유전자 검출)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1322-1323
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip that has the above characteristic and be able to solve the problems. At first, we fabricated a high integration type DNA chip array by lithography technology. It is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously.

  • PDF