Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0167

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats  

Dua, Pooja (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU))
Ren, Shuo (Department of Bioengineering, Dongguk University)
Lee, Sang Wook (Department of Bioengineering, Dongguk University)
Kim, Joon-Ki (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU))
Shin, Hye-su (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU))
Jeong, OK-Chan (Department of Biomedical Engineering and School of Mechanical Engineering, Inje University)
Kim, Soyoun (Department of Bioengineering, Dongguk University)
Lee, Dong-Ki (Global Research Laboratory (GRL) for RNAi Medicine, Department of Chemistry, Sungkyunkwan University (SKKU))
Abstract
Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.
Keywords
aptamer; biolayer Interferometry; biosensor; cell-SELEX; Escherichia coli; impedimetric sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, Y., Afrasiabi, R., Fathi, F., Wang, N., Xiang, C., Love, R., She, Z., and Kraatz, H.B. (2014). Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens. Bioelectron. 58, 193-199.   DOI
2 Matzura, O., and Wennborg, A. (1996). RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput. Appl. Biosci. 12, 247-249.
3 Mechaly, A., Cohen, H., Cohen, O., and Mazor, O. (2016). A biolayer interferometry-based assay for rapid and highly sensitive detection of biowarfare agents. Anal. Biochem. 506, 22-27.   DOI
4 Nistor, C., Osvik, A., Davidsson, R., Rose, A., Wollenberger, U., Pfeiffer, D., Emneus, J., and Fiksdal, L. (2002). Detection of Escherichia coli in water by culture-based amperometric and luminometric methods. Water Sci Technol. 45, 191-199.
5 Ozalp, V.C., Bayramoglu, G., Kavruk, M., Keskin, B.B., Oktem, H.A., and Arica, M.Y. (2014). Pathogen detection by core-shell type aptamer-magnetic preconcentration coupled to real-time PCR. Anal. Biochem. 447, 119-125.   DOI
6 Pandey, C.M., Tiwari, I., Sumana, G. (2014). Hierarchical cystine flower based electrochemical genosensor for detection of Escherichia coli O157:H7. RSC Adv. 4, 31047-31055.   DOI
7 Paniel, N., Baudart, J., Hayat, A., and Barthelmebs, L. (2013). Aptasensor and genosensor methods for detection of microbes in real world samples. Methods 64, 229-240.   DOI
8 Park, S., Kim, H., Paek, S.H., Hong, J.W., and Kim, Y.K. (2008). Enzyme-linked immuno-strip biosensor to detect Escherichia coli O157:H7. Ultramicroscopy 108, 1348-1351.   DOI
9 Lee, Y.J., Han, S.R., Maeng, J.S., Cho, Y.J., and Lee, S.W. (2012). In vitro selection of Escherichia coli O157:H7-specific RNA aptamer. Biochem. Biophys. Res. Commun. 417, 414-420.   DOI
10 Park, H.C., Baig, I.A., Lee, S.C., Moon, J.Y., and Yoon, M.Y. (2014). Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis. Appl. Biochem. Biotechnol 174, 793-802.   DOI
11 Robbens, J., Dardenne, F., Devriese, L., De Coen, W., and Blust, R. (2010). Escherichia coli as a bioreporter in ecotoxicology. App. Microbiol. Biotechnol. 88, 1007-1025.   DOI
12 Settu, K., Chen, C.J., Liu, J.T., Chen, C.L., and Tsai, J.Z. (2015). Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Biosens. Bioelectron. 66, 244-250.   DOI
13 Suh, S.H., Dwivedi, H.P., Choi, S.J., and Jaykus, L.A. (2014). Selection and characterization of DNA aptamers specific for Listeria species. Anal. Biochem. 459, 39-45.   DOI
14 Tortorello, M.L. (2003). Indicator organisms for safety and quality--uses and methods for detection: minireview. J. AOAC Int. 86, 1208-1217.
15 Wang, H., Wang, Y., Jinghua, S.L., Xu, Y.W., Guo, Y., and Huang, J. (2014). An RNA aptamer-based electrochemical biosensor for sensitive detection of malachite green. RSC Adv. 4, 60987-60994   DOI
16 Arthur, T.M., Bosilevac, J.M., Nou, X., and Koohmaraie, M. (2005). Evaluation of culture- and PCR-based detection methods for Escherichia coli O157:H7 in inoculated ground beeft. J. Food Protection 68, 1566-1574.   DOI
17 Wu, W., Zhang, J., Zheng, M., Zhong, Y., Yang, J., Zhao, Y., Wu, W., Ye, W., Wen, J., Wang, Q., et al. (2012). An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7. PloS One 7, e48999.   DOI
18 Zichel, R., Chearwae, W., Pandey, G.S., Golding, B., and Sauna, Z.E. (2012). Aptamers as a sensitive tool to detect subtle modifications in therapeutic proteins. PloS One 7, e31948.   DOI
19 Amaya-Gonzalez, S., de-los-Santos-Alvarez, N., Miranda-Ordieres, A.J., and Lobo-Castanon, M.J. (2013). Aptamer-based analysis:a promising alternative for food safety control. Sensors 13, 16292-16311.   DOI
20 Arora, P., Sindhu, A., Dilbaghi, N., and Chaudhury, A. (2011). Biosensors as innovative tools for the detection of food borne pathogens. Biosens. Bioelectron. 28, 1-12.   DOI
21 Brosel-Oliu, S., Uria, N., Abramova, N., and Bratov, A. (2015). Impedimetric sensors for bacteria detection, biosensors - micro and nanoscale applications. In nanotechnology and nanomaterials. Biosensors - Micro and Nanoscale Applications", T. Rinken, ed.
22 Burrs, S.L., Bhargava, M., Sidhu, R., Kiernan-Lewis, J., Gomes, C., Claussen, J.C., and McLamore, E.S. (2016). A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens. Bioelectron. 85, 479-487.   DOI
23 Concepcion, J., Witte, K., Wartchow, C., Choo, S., Yao, D., Persson, H., Wei, J., Li, P., Heidecker, B., Ma, W., et al. (2009). Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb. Chem. High Throughput Screen. 12, 791-800.   DOI
24 Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic. Acids Res. 16, 10881-10890.   DOI
25 Dua, P., S, S., Kim, S., and Lee, D.K. (2015). ALPPL2 aptamermediated targeted delivery of 5-Fluoro-2'-Deoxyuridine to pancreatic cancer. Nucleic Acid Ther. 25, 180-187.   DOI
26 Akbari, E.,Buntat, Z.,Afroozeh, A.,Zeinalinezhad, A., and Nikoukar, A. (2015). Escherichia coli bacteria detection by using graphenebased biosensor. IET Nanobiotechnol. 9, 273-279.   DOI
27 Kim, Y.S., Song, M.Y., Jurng, J., and Kim, B.C. (2013). Isolation and characterization of DNA aptamers against Escherichia coli using a bacterial cell-systematic evolution of ligands by exponential enrichment approach. Anal. Biochem. 436, 22-28.   DOI
28 Guo, X., Kulkarni, A., Doepke, A., Halsall, H.B., Iyer, S., and Heineman, W.R. (2012). Carbohydrate-based label-free detection of Escherichia coli ORN 178 using electrochemical impedance spectroscopy. Anal. Chem. 84, 241-246.   DOI
29 Huang, C.J., Dostalek, J., Sessitsch, A., and Knoll, W. (2011). Longrange surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7. Anal. Chem. 83, 674-677.   DOI
30 Kammer, M.N., Olmsted, I.R., Kussrow, A.K., Morris, M.J., Jackson, G.W., and Bornhop, D.J. (2014). Characterizing aptamer small molecule interactions with backscattering interferometry. Analyst 139, 5879-5884.   DOI
31 Koedrith, P.,Thasiphu, T., Weon, J.I., Boonprasert, R., Tuitemwong, K., and Tuitemwong, P. (2015). Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientificWorldJournal 2015, 510982.
32 Lazcka, O., Del Campo, F.J., and Munoz, F.X. (2007). Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22, 1205-1217.   DOI
33 Leclerc, H., Mossel, D.A., Edberg, S.C., and Struijk, C.B. (2001). Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Ann. Rev. Microbiol. 55, 201-234.   DOI
34 Lee, H.J., Kim, B.C., Kim, K.W., Kim, Y.K., Kim, J., and Oh, M.K. (2009). A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosens. Bioelectron. 24, 3550-3555.   DOI