DOI QR코드

DOI QR Code

Electrochemical determination of chloramphenicol using a glassy carbon electrode modified with dendrite-like Fe3O4 nanoparticles

  • Giribabu, Krishnan (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University) ;
  • Jang, Sung-Chan (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University) ;
  • Haldorai, Yuvaraj (Department of Energy and Materials Engineering, Dongguk University-Seoul) ;
  • Rethinasabapathy, Muruganantham (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University) ;
  • Oh, Seo Yeong (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University) ;
  • Rengaraj, Arunkumar (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University) ;
  • Han, Young-Kyu (Department of Energy and Materials Engineering, Dongguk University-Seoul) ;
  • Cho, Wan-Seob (Laboratory of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University) ;
  • Roh, Changhyun (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Huh, Yun Suk (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University)
  • Received : 2017.03.02
  • Accepted : 2017.05.17
  • Published : 2017.07.31

Abstract

In this study, magnetite ($Fe_3O_4$) nanoparticles were electrochemically synthesized in an aqueous electrolyte at a given potential of -1.3 V for 180 s. Scanning electron microscopy revealed that dendrite-like $Fe_3O_4$ nanoparticles with a mean size of < 80 nm were electrodeposited on a glassy carbon electrode (GCE). The $Fe_3O_4/GCE$ was utilized for sensing chloramphenicol (CAP) by cyclic voltammetry and square wave voltammetry. A reduction peak of CAP at the $Fe_3O_4/GCE$ was observed at 0.62 V, whereas the uncoated GCE exhibited a very small response compared to that of the $Fe_3O_4/GCE$. The electrocatalytic ability of $Fe_3O_4$ was mainly attributed to the formation of Fe(VI) during the anodic scan, and its reduction to Fe(III) on the cathodic scan facilitated the sensing of CAP. The effects of pH and scan rate were measured to determine the optimum conditions at which the $Fe_3O_4/GCE$ exhibited the highest sensitivity with a lower detection limit. The reduction current for CAP was proportional to its concentration under optimized conditions in a range of $0.09-47{\mu}M$ with a correlation coefficient of 0.9919 and a limit of detection of $0.09{\mu}M$ (S/N=3). Moreover, the fabricated sensor exhibited anti-interference ability towards 4-nitrophenol, thiamphenicol, and 4-nitrobenzamide. The developed electrochemical sensor is a cost effective, reliable, and straightforward approach for the electrochemical determination of CAP in real time applications.

Keywords

References

  1. Di Corcia A, Nazzari M. Liquid chromatographic-mass spectrometric methods for analyzing antibiotic and antibacterial agents in animal food products. J Chromatogr A, 974, 53 (2002). https://doi. org/10.1016/S0021-9673(02)00905-6.
  2. Yunis AA. Chloramphenicol: relation of structure to activity and toxicity. Annu Rev Pharmacol Toxicol, 28, 83 (1988). https://doi. org/10.1146/annurev.pa.28.040188.000503.
  3. Borowiec J, Wang R, Zhu L, Zhang J. Synthesis of nitrogen-doped graphene nanosheets decorated with gold nanoparticles as an improved sensor for electrochemical determination of chloramphenicol. Electrochim Acta, 99, 138 (2013). https://doi.org/10.1016/j. electacta.2013.03.092.
  4. Suarez CR, Phillip Ow E. Chloramphenicol toxicity associated with severe cardiac dysfunction. Pediatr Cardiol, 13, 48 (1992). https://doi.org/10.1007/BF00788231.
  5. Xiao F, Zhao F, Li J, Yan R, Yu J, Zeng B. Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotube-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes. Anal Chim Acta, 596, 79 (2007). https:// doi.org/10.1016/j.aca.2007.05.053.
  6. Zhang S, Liu Z, Guo X, Cheng L, Wang Z, Shen J. Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry. J Chromatogr B, 875, 399 (2008). https://doi.org/10.1016/j.jchromb.2008.09.035.
  7. Chuanuwatanakul S, Chailapakul O, Motomizu S. Electrochemical analysis of chloramphenicol using boron-doped diamond electrode applied to a flow-injection system. Anal Sci, 24, 493, (2008). https://doi.org/10.2116/analsci.24.493.
  8. Agui L, Guzman A, Yanez-Sedeno P, Pingarron JM. Voltammetric determination of chloramphenicol in milk at electrochemically activated carbon fibre microelectrodes. Anal Chim Acta, 461, 65 (2002). https://doi.org/10.1016/S0003-2670(02)00245-3.
  9. Dumont V, Huet AC, Traynor I, Elliott C, Delahaut P. A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florefenicol, florefenicol amine and chloramphenicol residues in shrimps. Anal Chim Acta, 567, 179 (2006). https://doi.org/10.1016/j.aca.2006.03.028.
  10. Wang L, Zhang Y, Gao X, Duan Z, Wang S. Determination of chloramphenicol residues in milk by enzyme-linked immunosorbent assay: improvement by biotin−streptavidin-amplified system. J Agric Food Chem, 58, 3265 (2010). https://doi.org/10.1021/ jf903940h.
  11. Vinas P, Balsalobre N, Hernandez-Cordoba M. Determination of chloramphenicol residues in animal feeds by liquid chromatography with photo-diode array detection. Anal Chim Acta, 558, 11 (2006). https://doi.org/10.1016/j.aca.2005.10.059.
  12. Mamani MCV, Amaya-Farfan J, Reyes FGR, da Silva JAF, Rath S. Use of experimental design and effective mobility calculations to develop a method for the determination of antimicrobials by capillary electrophoresis. Talanta, 76, 1006 (2008). https://doi. org/10.1016/j.talanta.2008.04.062.
  13. Iqbal MS, Shad MA, Ashraf MW, Bilal M, Saeed M. Development and validation of an HPLC method for the determination of dexamethasone, dexamethasone sodium phosphate and chloramphenicol in presence of each other in pharmaceutical preparations. Chromatographia, 64, 219 (2006). https://doi.org/10.1365/s10337- 006-0019-3.
  14. Impens S, Reybroeck W, Vercammen J, Courtheyn D, Ooghe S, De Wasch K, Smedts W, De Brabander H. Screening and confirmation of chloramphenicol in shrimp tissue using ELISA in combination with GC-MS2 and LC-MS2. Anal Chim Acta, 483, 153 (2003). https://doi.org/10.1016/S0003-2670(02)01232-1.
  15. Jin W, Ye X, Yu D, Dong Q. Measurement of chloramphenicol by capillary zone electrophoresis following end-column amperometric detection at a carbon fiber micro-disk array electrode. J Chromatogr B Biomed Sci Appl, 741, 155 (2000). https://doi. org/10.1016/S0378-4347(00)00049-9.
  16. Gomez-Taylor B, Palomeque M, Mateo JVG, Calatayud JM. Photoinduced chemiluminescence of pharmaceuticals. J Pharm Biomed Anal, 41, 347 (2006). https://doi.org/10.1016/j.jpba.2005.11.040.
  17. Yuan J, Oliver R, Aguilar MI, Wu Y. Surface plasmon resonance assay for chloramphenicol. Anal Chem, 80, 8329 (2008). https:// doi.org/10.1021/ac801301p.
  18. Guy PA, Royer D, Mottier P, Gremaud E, Perisset A, Stadler RH. Quantitative determination of chloramphenicol in milk powders by isotope dilution liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A, 1054, 365 (2004). https://doi. org/10.1016/j.chroma.2004.07.086.
  19. Shi X, Wu A, Zheng S, Li R, Zhang D. Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. J Chromatogr B, 850, 24 (2007). https://doi. org/10.1016/j.jchromb.2006.10.057.
  20. Adanyi N, Varadi M, Kim N, Szendro I. Development of new immunosensors for determination of contaminants in food. Curr Appl Phys, 6, 279 (2006). https://doi.org/10.1016/j.cap.2005.07.057.
  21. Alizadeh T, Ganjali MR, Zare M, Norouzi P. Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chem, 130, 1108 (2012). https://doi.org/10.1016/j.foodchem.2011.08.016.
  22. Codognoto L, Winter E, Doretto KM, Monteiro GB, Rath S. Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim Acta, 169, 345 (2010). https://doi.org/10.1007/s00604-010-0339-8.
  23. Zhang N, Xiao F, Bai J, Lai Y, Hou J, Xian Y, Jin L. Label-free immunoassay for chloramphenicol based on hollow gold nanospheres/ chitosan composite. Talanta, 87, 100 (2011). https://doi. org/10.1016/j.talanta.2011.07.108.
  24. Chullasat K, Kanatharana P, Limbut W, Numnuam A, Thavarungkul P. Ultra trace analysis of small molecule by label-free impedimetric immunosensor using multilayer modified electrode. Biosens Bioelectron, 26, 4571 (2011). https://doi.org/10.1016/j. bios.2011.05.029.
  25. Liao CY, Chang CC, Ay C, Zen JM. Flow injection analysis of chloramphenicol by using a disposable wall-jet ring disk carbon electrode. Electroanalysis, 19, 65 (2007). https://doi.org/10.1002/elan.200603706.
  26. Yu C, Gou L, Zhou X, Bao N, Gu H. Chitosan-$Fe_3O_4$ nanocomposite based electrochemical sensors for the determination of bisphenol A. Electrochim Acta, 56, 9056 (2011). https://doi.org/10.1016/j. electacta.2011.05.135.
  27. Roushani M, Hoseini SJ, Azadpour M, Heidari V, Bahrami M, Maddahfar M. Electrocatalytic oxidation behavior of NADH at Pt/$Fe_3O_4$/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination. Mater Sci Eng C, 67, 237 (2016). https://doi.org/10.1016/j.msec.2016.05.011.
  28. Devi P, Sharma C, Kumar P, Kumar M, Bansod BKS, Nayak MK, Singla ML. Selective electrochemical sensing for arsenite using rGO/$Fe_3O_4$ nanocomposites. J Hazard Mater, 322, 85 (2017). https://doi.org/10.1016/j.jhazmat.2016.02.066.
  29. Fayazi M, Taher MA, Afzali D, Mostafavi A. $Fe_3O_4$ and $MnO_2$ assembled on halloysite nanotubes: a highly efficient solid-phase extractant for electrochemical detection of mercury (II) ions. Sens Actuators B Chem, 228, 1 (2016). https://doi.org/10.1016/j. snb.2015.12.107.
  30. Yari A, Derki S. New MWCNT-$Fe_3O_4$@PDA-Ag nanocomposite as a novel sensing element of an electrochemical sensor for determination of guanine and adenine contents of DNA. Sens Actuators B Chem, 227, 456 (2016). https://doi.org/10.1016/j.snb.2015.12.088.
  31. Chaichi MJ, Ehsani M. A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated $Fe_3O_4$ nanoparticles and the luminol-$H_2O_2$-gold nanoparticle chemiluminescence detection system. Sens Actuators B Chem 223, 713 (2016). https://doi.org/10.1016/j.snb.2015.09.125.
  32. Munshi AM, Ho D, Saunders M, Agarwal V, Raston CL, Iyer KS. Influence of aspect ratio of magnetite coated gold nanorods in hydrogen peroxide sensing. Sens Actuators B Chem, 235, 492 (2016). https://doi.org/10.1016/j.snb.2016.05.090.
  33. Pourfallah G, Lou X. A novel recyclable magnetic nanostructure for highly sensitive, selective and reversible detection of zinc ions in aqueous solutions. Sens Actuators B Chem, 233, 379 (2016). https://doi.org/10.1016/j.snb.2016.04.087.
  34. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ. A promising electrochemical sensing platform based on ternary composite of polyaniline-$Fe_2O_3$-reduced graphene oxide for sensitive hydroquinone determination. Chem Eng J, 259, 594 (2015). https://doi.org/10.1016/j.cej.2014.08.047.
  35. Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR, Smart RS. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci, 257, 2717 (2011). https://doi.org/10.1016/j. apsusc.2010.10.051.
  36. Wilson D, Langell MA. XPS analysis of oleylamine/oleic acid capped $Fe_3O_4$ nanoparticles as a function of temperature. Appl Surf Sci, 303, 6 (2014). https://doi.org/10.1016/j.apsusc.2014.02.006.
  37. Fujii T, De Groot FMT, Sawatzky GA, Voogt FC, Hibma T, Okada K. In situ XPS analysis of various iron oxide films grown by $NO_2$- assisted molecular-beam epitaxy. Phys Rev B, 59, 3195 (1999). https://doi.org/10.1103/PhysRevB.59.3195.
  38. Ho CH, Tsai CP, Chung CC, Tsai CY, Chen FR, Lin HJ, Lai CH. Shape-controlled growth and shape-dependent cation site occupancy of monodisperse $Fe_3O_4$ nanoparticles. Chem Mater, 23, 1753 (2011). https://doi.org/10.1021/cm102758u.
  39. Denvir A, Pletcher D. Electrochemical generation of ferrate part I: dissolution of an iron wool bed anode. J Appl Electrochem, 26, 815 (1996). https://doi.org/10.1007/BF00683743.
  40. Denvir A, Pletcher D. Electrochemical generation of ferrate part 2: influence of anode composition. J Appl Electrochem, 26, 823 (1996). https://doi.org/10.1007/BF00683744.
  41. Zen JM, Jou JJ, Kumar AS. A sensitive voltammetric method for the determination of parathion insecticide. Anal Chim Acta, 396, 39 (1999). https://doi.org/10.1016/S0003-2670(99)00357-8.
  42. Chen JC, Shih JL, Liu CH, Kuo MY, Zen JM. Disposable electrochemical sensor for determination of nitroaromatic compounds by a single-run approach. Anal Chem, 78, 3752 (2006). https://doi. org/10.1021/ac060002n.
  43. Grygar T. Phenomenological kinetics of irreversible electrochemical dissolution of metal-oxide microparticles. J Solid State Electrochem, 2, 127 (1998). https://doi.org/10.1007/s100080050077.
  44. Zhou C, Liu Z, Dong Y, Li D. Electrochemical behavior of o-nitrophenol at hexagonal mesoporous silica modified carbon paste electrodes. Electroanalysis, 21, 853 (2009). https://doi.org/10.1002/ elan.200804480.
  45. Giribabu K, Suresh R, Manigandan R, Munusamy S, Kumar SP, Muthamizh S, Narayanan V. Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode. Analyst, 138, 5811 (2013). https://doi.org/10.1039/ C3AN00941F.
  46. Gao XP, Yang HX. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci, 3, 174 (2010). https:// doi.org/10.1039/B916098A.
  47. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem, 101, 19 (1979). https://doi.org/10.1016/S0022-0728(79)80075-3.
  48. Anson FC. Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-(ethylenedinitrilo (tetraacetate) on mercury electrodes. Anal Chem, 36, 932 (1964). https://doi.org/10.1021/ac60210a068.
  49. Karthik R, Govindasamy M, Chen SM, Mani V, Lou BS, Devasenathipathy R, Hou YS, Elangovan A. Green synthesized gold nanoparticles decorated graphene oxide for sensitive determination of chloramphenicol in milk, powdered milk, honey and eye drops. J Colloid Interface Sci, 475, 46 (2016). https://doi.org/10.1016/j.jcis.2016.04.044.
  50. Zhao H, Chen Y, Tian J, Yu H, Quan X. Selectively electrochemical determination of chloramphenicol in aqueous solution using molecularly imprinted polymer-carbon nanotubes-gold nanoparticles modified electrode. J Electrochem Soc, 159, J231 (2012). https://doi.org/10.1149/2.116206jes.