• Title/Summary/Keyword: Electrical Insulation Material

Search Result 762, Processing Time 0.029 seconds

Insulation Characteristics of PET Films for $SF_6$ EHV VT Winding ($SF_6$ EHV VT 권선 절연지의 절연특성)

  • 김정달;박재윤;정장근;김종석;하현진;이용길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.5
    • /
    • pp.391-396
    • /
    • 2001
  • The purpose of this study is to investigate the effect of hole or crack on the Insulation characteristics of a PET films for EHV(Extra High Voltage) VT winding. The hole or the crack in the PET films was made and the insulation characteristics of them were measured. Ad an experimental result, it was shown hat he PDIV(Partial Discharge Inception Voltage) and the BDV(Breakdown Voltage) of the PET films with hole or crack were lower than those without them, and were markedly dependent on their position and temperature. Therefore, the hole and the crack affected to insulation characteristics of PET films for SF$_{6}$EHV(Extra High Voltage) VT Winding.g.

  • PDF

Microstructure Property of High Voyage Motor Stator Insulation (고압전동기 고정자 권선 절연재료의 미세구조 특성)

  • 김희동;주영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.513-517
    • /
    • 1999
  • High voltage motor(rated 6.6kV and 448kw) has failed in the stator endwinding area during normal service. Experiments on microstructure property were conducted using the control and aged insulations, which were drawn out from stator windings of the high voltage motor. The analyses were characterized using stereozoom microscope(SM), scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy(EDS). SM result shows that large voids are present in the interface between turn insulation and groundwall insulation. SEM results indicated that the groundwall insulation is rarely thermal stress. EDS results showed that chemical elements in the high voltage motor stator insulations were Al, Si, O, K and Fe.

  • PDF

A Study on the Complex Accelerating Degradation and Condition Diagnosis of Traction Motor for Electric Railway (전기철도용 견인전동기의 복합가속열화 상태진단에 관한 연구)

  • 왕종배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • In this study, the stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the C-Class(200$\^{C}$ ) insulation system of traction motors. The complex accelerative degradation was periodically performed during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, the condition diagnosis test such as insulation resistance '||'&'||' polarization index, capacitance '||'&'||' dielectric loss and partial discharge properties were investigated in the temperature range of 20 ∼ 160$\^{C}$. Relationship among condition diagnosis tests was analyzed to find a dominative degradation factor and an insulation state at end-life point.

A study of the Insulation Characteristic in $SF_{6}$-$N_2$ Mixture Gases ($SF_{6}$-$N_2$ 혼합기체의 절연특성에 관한 연구)

  • 하성철;송병두
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.613-616
    • /
    • 2001
  • This $SF_{6}$ gas is widely used in industrial of insulation field. In this paper, $N_2$ is mixed to improve pure $SF_{6}$ gas characteristics. Electron transport coefficients in $SF_{6}$-$N_2$ mixture gases are simulated in range of E/N values from 70 to 400 [Td] at 300K and 1 Torr by using Boltzmann equation method. The results of this method, which are like electron drift velocity, ionization coefficient, attachment coefficient, effective ionization coefficient, and critical E/N, can be important data to present characteristic of gas for insulation. Specially critical E/N is a data to evaluate insulation strength of a gas and is presented in this paper for various mixture ratios of $SF_{6}$-$N_2$ mixture gases.

  • PDF

Analysis of Electric Field Distribution and Characteristics of Volume Resistivity in HDPE/EVA Film for Recycling (재활용을 고려한 HDPE/EVA필름의 전계분포 및 체적저항특성 해석)

  • Lee, Hung-Kyu;Lim, Kee-Joe;Kim, Yong-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.801-807
    • /
    • 2008
  • Recently, CV, CN-CV and CNCV-W cable are used for HVDC transmission and distribution cable. However, XLPE which is used as insulation layer of power cable has thermosetting properties. It is very difficult to recycling. In this paper, we prepared HDPE/EVA film, which the blending ratio are 80:20, 70:30, 60:40, 50;50 respectively for the purpose of recycling. Main factor such as electric field distribution and its resistivity in insulation system affected on insulation performance and reliability for HVDC applications. Therefore, electric field distribution formed by space charge and characteristics of volume resistivity was currently investigated. We suggest the possibility of utilization for HVDC insulation layer from the results.

Degradation Properties of Epoxy Resin Used in Indoor (옥내용 에폭시 수지의 열화 특성)

  • 남기동;정중일;연복희;허창수;박영두
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.57-60
    • /
    • 2000
  • In this paper, study on the properties of the thermal degradated epoxy resin which is used in indoor insulation apparatus is performed to investigate the problems of the decreasing insulation characteristics and crack in the indoor insulation apparatus. As a parameter of variation, SEM, contact angle, surface resistivity, relative dielectric constant and weight loss are measured. As the results of the above measurements, the contact angle and surface resistivity of the epoxy resin has increased to 200$^{\circ}C$ in but at the above 200$^{\circ}C$ the values have decreased. The relative dielectric constants the thermal treated samples have increased on with the temperature increase. We find the volatile components of the epoxy resin compound has disappeared during thermal degradation by SEM. The insulation properties of the epoxy resin have increased by the 200$^{\circ}C$ but decreased in the above 200$^{\circ}C$.

  • PDF

dispersion and relaxation of Epoxy/Layered Nanocomposite (에폭시/나노층상복합재료의 유전분산과 완화)

  • Ahn, Joon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Epoxy/mica has been used as the material of high-voltage rotator stator winding due to its high insulation performance, mechanical strength, and thermal stability. In recent years, however, it shows frequent changes in the load of generators and frequent automatic stops due to the significant increase in peak loads from the increase in the applied load of power facilities according to the introduction of advanced and high-technology equipments. Thus, it is necessary to develop new materials that highly develop the conventional insulation materials. Nanotechnology introduced in the present time has become an alternative plan that overcomes such technical limitations. In addition, the nano-scaled intercalation composite has been known as the material that represent excellent electrical, mechanical, and thermal characteristics compared to the conventional materials. This study investigated the dielectric dispersion and relaxation characteristics of the nanocomposite, which was fabricated by mixing epoxy matrix with nano-scaled intercalation mica and clay, according to changes in frequencies and temperatures.

  • PDF

A Study on Electrical Properties and Structure Analysis of Epoxy-Ceramic Composite Materials (에폭시-세라믹 복합재료의 전기적 특성 및 구조분석)

  • 정지원;홍경진;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.9-12
    • /
    • 1994
  • Epoxy-Ceramic Composite have good insulating, therma1 and mechanical properties, so it is studied actively on this material. In this thesis, we made a composite material b)\ulcorner filling Epoxy Resin with ceramics treated with Sillane Coupling Agent and studied dielectric and insulating characteristics according to treatment density of Sillane Coupling Agent and weight percent of filler. As a result, loss tangent increase and electrical breakdown voltage decrease according to increasing treatment density of sillane coupling agent because Interface matching between matrix and filler is not good. The best treatment density of sillane coupling agent is 0.5% water solution, in this density the best interface matching is achieved so good dielectric and insulation characteristics are shown. Dielectric and insulation characteristics according to weight percent of filler are best at 25wt.

  • PDF

Effect of Ambient Temperature on Insulation Lifetime of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.163-167
    • /
    • 2016
  • Inverter surge resistant enameled wire was prepared with an organic/inorganic hybrid nanocomposite, and the effect of ambient temperature on the insulation lifetime of the enameled wire in the form of twisted pair was studied by a withstanding voltage tester. The organic polymer was Polyesterimide-polyamideimide (EI/AI) and the inorganic material was a Nano-sized silica (average particle size : 15 nm). The enamel thickness was 50 μm and the ambient temperature was 100, 150, 200, and 250, respectively. Transmission electron microscopy (TEM) observation showed that Nano-sized Silica were evenly dispersed in EI/AI. There were many air gaps in a twisted pair, therefore, when voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge accordi, ng to Paschen’s law. As ambient temperature increased, insulation lifetime decreased according to Arrhenius relationship, which was explained by the increasing mobility of polymer chains in EI or AI. And insulation breakdown voltage value at 10 kHz was 1,864.5 sec (31.1 min), which is 1.9 times higher than at 20 kHz, 981.6 sec (16.4 min).