• 제목/요약/키워드: Electrical Engineering Discipline

검색결과 20건 처리시간 0.02초

Multi-Dielectric & Multi-Band operations on RF MEMS

  • Gogna, Rahul;Gaba, Gurjot Singh;Jha, Mayuri;Prakash, Aditya
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.86-91
    • /
    • 2016
  • Ever increasing demand for microwave operated applications has cultivated need for high-performance universal systems capable of working on multi-bands. This objective can be realized using Multi-Dielectrics in RF MEMS capacitive switch. In this study, we present a detailed analysis of the effect of various dielectrics on switch performance. The design consists of a capacitive switch and performance is analyzed by changing the dielectric layers beneath the switch. The results are obtained using three different dielectrics including Silicon nitride (7.6), Hafnium dioxide (25) and Titanium oxide (50). Testing of proposed switch yields high isolation (- 87.5 dB) and low insertion loss (- 0.1 dB at 50 GHz) which is substantially better than the conventional switches. The operating bandwidth of the proposed switch (DC to 95 GHz) makes it suitable for wide band microwave applications.

Design Aspects of a New Reliable Torsional Switch with Excellent RF Response

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권1호
    • /
    • pp.7-12
    • /
    • 2016
  • This paper proposes a metal contact RF MEMS switch which utilizes a see-saw mechanism to acquire a switching action. The switch was built on a quartz substrate and involves vertical deflection of the beam under an applied actuation voltage of 5.46 volts over a signal line. The see-saw mechanism relieves much of the operation voltage required to actuate the switch. The switch has a stiff beam eliminating any stray mechanical forces. The switch has an excellent isolation of −90.9 dB (compared to − 58 dB in conventional designs ), the insertion of −0.2 dB, and a wide bandwidth of 88 GHz (compared to 40 GHz in conventional design ) making the switch suitable for wide band applications.

An Ultra Wideband, Novel and Reliable RF MEMS Switch

  • Jha, Mayuri;Gogna, Rahul;Gaba, Gurjot Singh;Miglani, Rajan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권4호
    • /
    • pp.183-188
    • /
    • 2016
  • This paper presents the design and characterization of wide band ohmic microswitch with an actuation voltage as low as 20~25 V, and a restoring force of 14.1 μN. The design of the proposed switch is primarily composed of an electrostatic actuator, bridge membrane, cantilever (beam) and coplanar waveguide, suspended over the substrate. The analysis shows an insertion loss of −0.002 dB at 1GHz and remains as low as −0.35 dB, even at 100 GHz. The isolation loss of the switch is sustained at −21.09 dB at 100GHz, with a peak value of −99.58 dB at 1 GHz and up-state capacitance of 4 fF. To our knowledge, this is the first demonstration of a series contact switch, which works over a wide bandwidth (DC-100 GHz) and with such a high and sustained isolation, even at high frequencies and with an excellent figure of merit (fc=1/2.pi.Ron.Cu= 39.7 THz).

A Disparate Low Loss DC to 90 GHz Wideband Series Switch

  • Gogna, Rahul;Jha, Mayuri;Gaba, Gurjot Singh;Singh, Paramdeep
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.92-97
    • /
    • 2016
  • This paper presents design and simulation of wide band RF microswitch that uses electrostatic actuation for its operation. RF MEMS devices exhibit superior high frequency performance in comparison to conventional devices. Similar techniques that are used in Very Large Scale Integration (VLSI) can be employed to design and fabricate MEMS devices and traditional batch-processing methods can be used for its manufacturing. The proposed switch presents a novel design approach to handle reliability concerns in MEMS switches like dielectric charging effect, micro welding and stiction. The shape has been optimized at actuation voltage of 14-16 V. The switch has an improved restoring force of 20.8 μN. The design of the proposed switch is very elemental and primarily composed of electrostatic actuator, a bridge membrane and coplanar waveguide which are suspended over the substrate. The simple design of the switch makes it easy for fabrication. Typical insertion and isolation of the switch at 1 GHz is -0.03 dB and -71 dB and at 85 GHz it is -0.24 dB and -29.8 dB respectively. The isolation remains more than - 20 db even after 120 GHz. To our knowledge this is the first demonstration of a metal contact switch that shows such a high and sustained isolation and performance at W-band frequencies with an excellent figure-of merit (fc=1/2.pi.Ron.Cu =1,900 GHz). This figure of merit is significantly greater than electronic switching devices. The switch would find extensive application in wideband operations and areas where reliability is a major concern.

Design of CMOS OTA-C Integrator with a Wide Linear Input Range

  • Shin, Yun-Tae;Ahn, Joung-Cheol;Shin, Kyoo-Jae;Kim, Dong-Yong
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.465-468
    • /
    • 1988
  • A n-well CMOS Operational Transconductance Amplifier -C(OTA-C) integrator with a wide linear input range is designed. The circuit designed has superior linearity of input voltage range compared with the conventional source-coupled pair OTA. The OTA developed in this paper is versatile in application: diverse applications are in the fields of linear amplifiers, continuous-time filters, gain control circuits, and analog multipliers, etc..

  • PDF

발송배전기술사 고시 출제경향 분석 및 대학 교과과정 반영에 대한 고찰 (A Trend Analysis on Professional Engineer Examination and Reflection to a College Academic Curriculum - Focused on Generation/Transmission/Distribution Subdiscipline of Electrical Engineering -)

  • 권준오;이상중
    • 조명전기설비학회논문지
    • /
    • 제26권4호
    • /
    • pp.88-94
    • /
    • 2012
  • The government has pushed ahead with the establishment of a connection system among education-task-qualification with regards to the promotion of engineering industry, but there has been a lack of pertinent data. In this regard, this study investigated the ways of connecting universities' engineering education with Electrical Professional Engineer examination. The results show that the tendency of questions consists of 30[%] of transmission, 16[%] of basic theory, 14[%] of transformer, 14[%] of generation, 9[%] of new technology, 11[%] of other relevant fields. This study also presents a survey on the relationship between the engineer's license and college curriculum. The curriculum of Electrical Engineering Department of a leading National University in Seoul is investigated in relation to the Examination. Some learning materials for successful completion of the university curriculum and acquisition of the Professional Engineer license are also recommended.

Multimodal Optimization Based on Global and Local Mutation Operators

  • Jo, Yong-Gun;Lee, Hong-Gi;Sim, Kwee-Bo;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1283-1286
    • /
    • 2005
  • Multimodal optimization is one of the most interesting topics in evolutionary computational discipline. Simple genetic algorithm, a basic and good-performance genetic algorithm, shows bad performance on multimodal problems, taking long generation time to obtain the optimum, converging on the local extrema in early generation. In this paper, we propose a new genetic algorithm with two new genetic mutational operators, i.e. global and local mutation operators, and no genetic crossover. The proposed algorithm is similar to Simple GA and the two genetic operators are as simple as the conventional mutation. They just mutate the genes from left or right end of a chromosome till the randomly selected gene is replaced. In fact, two operators are identical with each other except for the direction where they are applied. Their roles of shaking the population (global searching) and fine tuning (local searching) make the diversity of the individuals being maintained through the entire generation. The proposed algorithm is, therefore, robust and powerful.

  • PDF

전력시스템 관리 및 Vehicle to Grid 전력시장 개발을 위한 가상발전소의 활용방안 (Review of Virtual Power Plant Applications for Power System Management and Vehicle-to-Grid Market Development)

  • 진태환;박혜리;정모;신기열
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2251-2261
    • /
    • 2016
  • The use of renewable energy sources and energy storage systems is increasing due to new policies in the energy industries. However, the increase in distributed generation hinders the reliability of power systems. In order to stabilize power systems, a virtual power plant has been proposed as a novel power grid management system. The virtual power plant plays includes different distributed energy resources and energy storage systems. We define a core virtual power plant technology related to demand response and ancillary service for the cases of Korea, America, and Europe. We also suggest applications of the proposed virtual power plant to the vehicle-to-grid market for restructuring national power industries in Korea.

Computation of Beam Stress and RF Performance of a Thin Film Based Q-Band Optimized RF MEMS Switch

  • Singh, Tejinder
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권4호
    • /
    • pp.173-178
    • /
    • 2015
  • In lieu of the excellent radio frequency (RF) performance of microelectromechanical system ( MEMS) switches, these micro switches need higher actuation voltage for their operation. This requirement is secondary to concerns over the swtiches’ reliability. This paper reports high reliability operation of RF MEMS switches with low voltage requirements. The proposed switch is optimised to perform in the Q-band, which results in actuation voltage of just 16.4 V. The mechanical stress gradient in the thin micro membrane is computed by simulating von Mises stress in a multi-physics environment that results in 90.4 MPa stress. The computed spring constant for the membrane is 3.02 N/m. The switch results in excellent RF performance with simulated isolation of above 38 dB, insertion loss of less than 0.35 dB and return loss of above 30 dB in the Q-band.

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat;Tan, Sin Tee;Chong, Kok-Keong;Lee, Hock Beng;Ginting, Riski Titian;Lim, Fang Sheng;Yap, Chi Chin;Tan, Chun Hui;Chang, Wei Sea;Jumali, Mohammad Hafizuddin Hj
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1564-1570
    • /
    • 2018
  • Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.