Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.4.183

An Ultra Wideband, Novel and Reliable RF MEMS Switch  

Jha, Mayuri (Discipline of Electronics & Electrical Engineering, Lovely Professional University)
Gogna, Rahul (Discipline of Electronics & Electrical Engineering, Lovely Professional University)
Gaba, Gurjot Singh (Discipline of Electronics & Electrical Engineering, Lovely Professional University)
Miglani, Rajan (Discipline of Electronics & Electrical Engineering, Lovely Professional University)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.4, 2016 , pp. 183-188 More about this Journal
Abstract
This paper presents the design and characterization of wide band ohmic microswitch with an actuation voltage as low as 20~25 V, and a restoring force of 14.1 μN. The design of the proposed switch is primarily composed of an electrostatic actuator, bridge membrane, cantilever (beam) and coplanar waveguide, suspended over the substrate. The analysis shows an insertion loss of −0.002 dB at 1GHz and remains as low as −0.35 dB, even at 100 GHz. The isolation loss of the switch is sustained at −21.09 dB at 100GHz, with a peak value of −99.58 dB at 1 GHz and up-state capacitance of 4 fF. To our knowledge, this is the first demonstration of a series contact switch, which works over a wide bandwidth (DC-100 GHz) and with such a high and sustained isolation, even at high frequencies and with an excellent figure of merit (fc=1/2.pi.Ron.Cu= 39.7 THz).
Keywords
RF MEMS; Quartz substrate; Figure of merit; High isolation; Wide bandwidth; Low actuation voltage; Broadband antennas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Bozler, R. Drangmeister, S. Duffy, M. Gouker, J. Knecht, L. Kushner, R. Parr, S. Rabe, and L. Travis, IEEE MTT-S Int., 1, 153 (2000).
2 M. Kim, J. B. Hacker, R. E. Mihailovich, and J. F. DeNatale, IEEE Microwave Wireless Compon. Lett., 11, 56 (2001). [DOI: http://dx.doi.org/10.1109/7260.914301]   DOI
3 N. E. McGruer, P. M. Zavracky, R. Morrison, S. Majumder, D. Potter, and M. Schirmer, Sensor Expo (Cleveland, USA, 1999).
4 J. B. Muldavin G. M. Rebeiz, IEEE Microwave Wireless Compon. Lett., 11, 373 (2001). [DOI: http://dx.doi.org/10.1109/7260.950765]   DOI
5 Z. Yao, S. Chen, S. Eshelman, D. Denniston, and C. Goldsmith, IEEE J. MEMS, 8, 129 (1999). [DOI: http://dx.doi. org/10.1109/84.767108]   DOI
6 G. M. Rebeiz, C. D. Patel, S. K. Han, C. Ko, and K. M. Ho, Microwave Magazine, IEEE, 14, 57 (2013). [DOI: http://dx.doi.org/10.1109/MMM.2012.2226540]   DOI
7 O. Bayraktar, O. A. Civi, and T. Akin, IEEE Transactions on Antennas and Propagation, 60, 854 (2012). [DOI: http://dx.doi.org/10.1109/TAP.2011.2173099]   DOI
8 A. Pourziad, S. Nikmehr, and H. Veladi, Prog. in Electromagnetics Research, 139, 389 (2013). [DOI: http://dx.doi.org/10.2528/PIER13012303]   DOI
9 J. J. Yao and M. F. Chang, International Conference on SolidState Sensors and Actuators Digest (Stockholm, Sweden, 1995) p. 384-387.
10 Q. A. Huang, L. F. Wang, J. Y. Tang, Y. Q. Zhu, and L. Han, IEEE Electron Device Letters, 34, 1062 (2013). [DOI: http://dx.doi.org/10.1109/LED.2013.2269993]   DOI
11 S. Sengupta and K. U. Kiran, Proc. of IEEE, 2nd International Conference On Electronics and Communication System (ICECS), 1110 (2015).
12 G. L. Tan and G. M. Rebiez, IEEE Microwave and Wireless Components Letters, 12, 212 (2002). [DOI: http://dx.doi.org/10.1109/LMWC.2002.1009998]   DOI
13 J. Lampen, S. Majumder, R. Morrison, and A. Chaudhry, International Journal of RF and Microwave Computer-Aided Engineering - RF Applications of MEMS and Micromachining, 14, 338 (2004).
14 J. Lampen, S. Majumder, R. Morrison, and A. Chaudhry, International Journal of RF and Microwave Computer-Aided Engineering - RF Applications of MEMS and Micromachining, 14, 338 (2004).
15 G. M. Rebeiz, RF MEMS: Theory, Design, and Technology (Hoboken, NJ: J. Wiley, 2003). [DOI: http://dx.doi.org/10.1002/0471225282]   DOI