• Title/Summary/Keyword: Electrical Bonding

Search Result 630, Processing Time 0.026 seconds

Effect of CH4 Concentration on the Dielectric Properties of SiOC(-H) Film Deposited by PECVD (CH4 농도 변화가 저유전 SiOC(-H) 박막의 유전특성에 미치는 효과)

  • Shin, Dong-Hee;Kim, Jong-Hoon;Lim, Dae-Soon;Kim, Chan-Bae
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.90-94
    • /
    • 2009
  • The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the $CH_4$ concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/$SiO_2$/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with $SiH_4$, $CO_2$ and $CH_4$ gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the $CH_4$ concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-$(CH_3)_2$, Si-$CH_3$ and $CH_x$ in the absorbance mode over the range from 650 to $4000\;cm^{-1}$. The results showed that dielectric properties with different $CH_4$ concentrations are closely related to the (Si-$CH_3$)/[(Si-$CH_3$)+(Si-O)] ratio.

Study on the design of LEO Satellite System in Space Plasma Environment (우주 플라즈마 환경에서 저궤도 위성 시스템 설계에 관한 고찰)

  • Lim, S.B.;Hong, S.P.;Kim, T.Y.;Jang, J.W.;Choi, S.W.
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.67-75
    • /
    • 2008
  • The electrostatic charging/discharging mechanism and its effects, and the system design considerations in the space plasma environment are studied in this paper. The electrostatic discharge (ESD) effects are carefully taken into account for a design of the satellite system at the early stage of the development. Generally, the electrical design requirements are specified to protect the satellite system from the ESD effects in the electromagnetic compatibility specifications. Those requirements are included the grounding, the bonding, the shielding, the conductive coating, the electric interfacing and so on. The space charging is caused by the increasing of the voltage difference between the each locations on the satellite surface. If the space charging is continued up to threshold, it may be occurred the system failure. This phenomenon is depended on the mission of system, electrical and mechanical configuration, system operation, and orbit condition. Therefore the related requirements are properly tailored and concentrated into the safety design.

  • PDF

SOl Pressure Sensors (SOI 압력(壓力)센서)

  • Chung, Gwiy-Sang;Ishida, Makoto;Nakamura, Tetsuro
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.5-11
    • /
    • 1994
  • This paper describes the characteristics of a piezoresistive pressure sensor fabricated on a SOI (Si-on-insulator) structure, in which the SOI structures of Si/$SiO_{2}$/Si and Si/$Al_{2}O_{3}$/Si were formed by SDB (Si-wafer direct bonding) technology and hetero-epitaxial growth, respectively. The SOI pressure sensors using the insulator of a SOI structure as the dielectrical isolation layer of piezoresistors, were operated at higher temperatures up to $300^{\circ}C$. In the case of pressure sensors using the insulator of a SOI structure as an etch-stop layer during the formation of thin Si diaphragms, the pressure sensitivity variation of the SOI pressure sensors was controlled to within a standard deviation of ${\pm}2.3%$ over 200 devices. Moreover, the pressure sensors fabricated on the double SOI ($Si/Al_{2}O_{3}/Si/SiO_{2}/Si$) structures formed by combining SDB technology with epitaxial growth also showed very excellent characteristics with high-temperature operation and high-resolution.

  • PDF

Emission Characteristics of OLEDs Using LiF/Al/LiF Structure (LiF/Al/LiF 구조를 적용한 OLED 소자의 발광 특성)

  • Park, Yeon-Suk;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.696-700
    • /
    • 2010
  • We fabricated red and blue organic light emitting display (OLEDs) which had the two kinds of multi-structure of ITO/HIL/HTL/EML/ETL/LiF/Al and ITO/HIL/HTL/EML/ETL/LiF/Al/LiF. In the case of red OLED that had LiF/Al/LiF structure compared to LiF/Al structure, the current density increased from 4.3 mA/$cm^2$ to 7.3 mA/$cm^2$, and the brightness increased from 488 cd/$m^2$ to 1,023 cd/$m^2$ at 7.0 V, and as a result the current efficiency was improved from 11.28 cd/A to 13.95 cd/A. Also in the case of blue OLED that had LiF on Al cathode layer, the current density increased from 1.2 mA/$cm^2$ to 1.8 mA/$cm^2$, and the brightness increased from 45 cd/$m^2$ to 85 cd/$m^2$ at 7.0 V, and as a result the current efficiency was improved from 3.69 cd/A to 4.82 cd/A. Through these experimental results it could be suggested that the LiF layer formed on Al prevents the oxidation of Al surface, and the electrode resistance become low with increase of supplied electrons, therefore the brightness and the efficiency are improved from the influence to the well-balanced bonding of electron and hole at emitting layer.

Effect of Plasma Density on the Tribological Properties of Amorphous Carbon Thin Films (비정질 탄소박막의 트라이볼로지 특성에 미치는 플라즈마 밀도의 영향)

  • Park, Y.S.;Lee, J.D.;Hong, B.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.5
    • /
    • pp.333-338
    • /
    • 2011
  • In this work, we have fabricated the amorphous carbon (a-C:H) thin film by using unbalanced magnetron sputtering method with the magnetron source of inside/outside electromagnetic coils as the protective coating materials. We have investigated the tribological properties of amorphous carbon films prepared with various electromagnetic coil currents for the change of the plasma density, such as hardness, friction coefficient, adhesion, and surface roughness. Raman and HRTEM were used to study the microstructure of carbon films. In the result, the hardness and adhesion properties of a-C:H films were improved with increasing electromagnetic coil current due to the increase of the plasma density to the substrate. Thus, these results can be explained by the increase of $sp^2$ bonding and cluster number in the amorphous carbon film, related to the improved bombardment around substrate and the increased substrate temperature.

Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode (Polydimethylsiloxane 채널과 indium tin oxide 전극을 이용한 일회용 전기화학적 검출 시스템)

  • Yi In-Je;Kang Chi-Jung;Kim Yong-Sang;Kim Ju-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.227-231
    • /
    • 2005
  • We have developed a microsystem with a capillary electrophoresis (CE) and an electrochemical detector (ECD). The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for an application to the electrochemical detection. The system was realized with polydimethylsiloxane (PDMS)-glass chip and indium tin oxide electrode. The injection and separation channels (80 um wide$\ast$40 um deep) were produced by moulding a PDMS against a microfabricated master with relatively simple and inexpensive methods. A CE-ECD systems were fabricated on the same substrate with the same fabrication procedure. The surface of PDMS layer and ITO-coated glass layer was treated with UV-Ozone to improve bonding strength and to enhance the effect of electroosmotic flow. For comparing the performance of the ITO electrodes with the gold electrodes, gold electrode microchip was fabricated with the same dimension. The running buffer was prepared by 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) titrated to PH 6.5 using 0.1 N NaOH. We measured olectropherograms for the testing analytes consisted of catechol and dopamine with the different concentrations of 1 mM and 0.1 mM, respectively. The measured current peaks of dopamine and catechol are proportional to their concentrations. For comparing the performance of the ITO electrodes with the gold electrodes, electropherograms was measured for CE-ECD device with gold electrodes under the same conditions. Except for the base current level, the performances including sensitivity, stability, and resolution of CE-ECD microchip with ITO electrode are almost the same compared with gold electrode CE-ECD device. The disposable CE/ECD system showed similar results with the previously reported expensive system in the limit of detection and peak skew. When we are using disposable microchips, it is possible to avoid polishing electrode and reconditioning.

A Study on the Hermetic Method for Packaging of Implantable Medical Device (생체 이식형 의료기기의 패키징을 위한 완전 밀폐 방법에 관한 연구)

  • Park, Jae-Soon;Kim, Sung-Il;Kim, Eung-Bo;Kang, Young-Hwan;Cho, Sung-Hwan;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.407-412
    • /
    • 2017
  • This paper introduces a biocompatible packaging system for implantable medical device having a hermetic sealing, such that a perfect physical and chemical isolation between electronic medical system and human body (including tissue, body fluids, etc.) is obtained. The hermetic packaging includes an electronic MEMS pressure sensor, power charging system, and bluetooth communication system to wirelessly measure variation of capacitance. The packaging was acquired by Quartz direct bonding and $CO_2$ laser welding, with a size of width $ 6cm{\times}length\;10cm{\times}lheight\;3cm$. Hermetic sealing of the packaged system was tested by changing the pressure in a hermetic chamber using a precision pressure controller, from atmospheric to 900 mmHg. We found that the packaged system retained the same count or capacitance values with sensor 1 - 25,500, sensor 2 - 26,000, and sensor 3 - 20,800, at atmospheric as well as 900 mmHg pressure for 5 hours. This result shows that the packaging method has perfect hermetic sealing in any environment of the human body pressure.

Fabrication of Laminated Multi-layer Flexible Substrate with Cu/Sn Via (Cu/Sn 비아를 적용한 일괄적층 방법에 의한 다층연성기판의 제조)

  • Lee H. J.;Yu Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.1-5
    • /
    • 2004
  • A multi-layer flexible substrate is composed of copper(Cu)/polyimide that are known as good electrical conductivity, and low dielectric constant, respectively. In this study. conductor line of $5{\mu}m$-pitch was successfully fabricated without non-uniform pattern shape by electroplating copper and coating polyimide on patterned stainless steel. For multi-layer flexible substrate, via holes were drilled by UV laser and filled with electroplating copper and tin. And then, the PI layer with vias and conductor lines was stripped from stainless steel substrate. The PI layers were laminated at once with careful alignment between layers. Solid state reaction between tin and copper during lamination formed the intermetallic compounds of $Cu_6Sn_5$($\eta$-phase) and $Cu_3Sn$($\epsilon$-Phase) and achieved a complete inter-connection by vertically positioning the plugged via holes on via pad. The via formation process has several advantages; such as better electrical property and lower cost than V type via and paste via.

  • PDF

Fabrication Of Ultraviolet LED Light Source Module Of Current Limiting Diode Circuit By Using Flip Chip Micro Soldering (마이크로솔더링을 이용한 정전류다이오드 회로 자외선 LED 광원모듈 제작)

  • Park, Jong-Min;Yu, Soon Jae;Kawan, Anil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.237-240
    • /
    • 2016
  • The improvement of irradiation intensity and irradiation uniformity is essential for large area and high power UVA light source application. In this study, large number of chips bonded by micro soldering technique were driven by low current, and current limiting diodes were configured to supply constant current to parallel circuits consisting of large number of series strings. The dimension of light source module circuit board was $350{\times}90mm^2$ and 16,650 numbers of 385 nm flip chip LEDs were used with a configuration of 90 parallel and 185 series strings. The space between LEDs in parallel and series strings were maintained at 1.9 mm and 1.0 mm distance, respectively. The size of the flip chip was $750{\times}750{\mu}m^2$ were used with contact pads of $260{\times}669{\mu}m^2$ size, and SAC (96.5 Sn/3.0 Ag/0.5 Cu) solder was used for flip chip bonding. The fabricated light source module with 7.5 m A supply current showed temperature rise of $66^{\circ}C$, whereas irradiation was measured to be $300mW/cm^2$. Inaddition, 0.23% variation of the constant current in each series string was demonstrated.

Fluidically-Controlled Phase Tunable Line Using Inkjet-Printed Microfluidic Composite Right/Left Handed Transmission Line (유체를 이용하여 위상응답을 제어하기 위해 잉크젯 프린팅으로 구현한 미세유체채널 복합 좌·우향 전송선로)

  • Choi, Sungjin;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • In this paper, a novel fluid controlled phase tunable line using inkjet printed microfluidic composite right/left-handed(CRLH) transmission line(TL) is proposed. A CRLH-TL prototype has been inkjet-printed on a paper substrate using silver nano particle ink. In addition, a laser-etched microfluidic channel in poly methyl methacrylate(PMMA) has been integrated with the CRLH TL using inkjet-printed SU-8 as a bonding material. The proposed TL provides excellent phase-tuning capability that is dependent on the different fluidic materials used. As the fluid is changed, the proposed TL can have negative-phase, zero-phase, and positive-phase characteristics at 900 MHz and reflection coefficient is maintained to below -10 dB. The performance of the proposed TL is successfully validated using simulation and measurement results.