Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.5.333

Effect of Plasma Density on the Tribological Properties of Amorphous Carbon Thin Films  

Park, Y.S. (Department of Electrical and Electronic Engineering, Seonam University)
Lee, J.D. (Department of Electrical and Electronic Engineering, Seonam University)
Hong, B. (School of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.5, 2011 , pp. 333-338 More about this Journal
Abstract
In this work, we have fabricated the amorphous carbon (a-C:H) thin film by using unbalanced magnetron sputtering method with the magnetron source of inside/outside electromagnetic coils as the protective coating materials. We have investigated the tribological properties of amorphous carbon films prepared with various electromagnetic coil currents for the change of the plasma density, such as hardness, friction coefficient, adhesion, and surface roughness. Raman and HRTEM were used to study the microstructure of carbon films. In the result, the hardness and adhesion properties of a-C:H films were improved with increasing electromagnetic coil current due to the increase of the plasma density to the substrate. Thus, these results can be explained by the increase of $sp^2$ bonding and cluster number in the amorphous carbon film, related to the improved bombardment around substrate and the increased substrate temperature.
Keywords
a-C:H; Unbalanced magnetron sputtering; Electromagnetic coil current; Hardness; Adhesion; Friction coefficient;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. C. Damasceno, S. S. Camargo Jr, F. L. Freire Jr, and R. Carius, Surf. Coat. Technol. 133-134, 247 (2000).   DOI
2 J. T. Ryu, Y. G. Baek, M. Katayama, H. J. Lee, and Kenjiro Oura, J. Korean Vaccum Soc. 12, 35 (2003).
3 N. Yasumaru, K. Miyazaki, and J. Kiuchi, Appl. Phys. A 76, 983 (2003).   DOI
4 Y. S. Park, H. J. Cho, and B. Y. Hong, J. Korean Vaccum Soc. 16, 122 (2007).   DOI
5 A. A. Solov'ev, N. S. Sochugov, K. V. Oskomov, and S. V. Rabotkin, Plasma Physics Reports 35, 399 (2009).   DOI
6 D. Sheeja, B. K. Tay, S. P. Lau, and X. Shi, Wear 249, 433 (2001).   DOI
7 X. L. Peng, Z. H. Barber, and T. W. Clyne, Surf. Coat. Technol. 138, 23 (2001).   DOI
8 V. Kulikovsky, P. Bohac, F. France, A. Deineka, V. Vorlicek, and L. Jastrabik, Diam. Relat. Mater. 10, 1076 (2001).   DOI
9 A. Grill, Diam. Relat. Mater. 8, 428 (1999).   DOI
10 M. Schlatter, Diam. Relat. Mater. 11, 1781 (2002).   DOI
11 A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, Diam. Relat. Mater. 10, 1952 (2001).   DOI
12 J. K. Luo, Y. Q. Fu, H. R. Le, J. A. Williams, S. M. Spearing, and W. I. Milne, J. Micromech. Microeng. 17, S147 (2007).   DOI