• Title/Summary/Keyword: Electrical Bonding

Search Result 635, Processing Time 0.03 seconds

Detection of edge delamination in surface adhered active fiber composites

  • Wang, Dwo-Wen;Yin, Ching-Chung
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.633-644
    • /
    • 2009
  • A simple method has been developed to detect the bonding condition of active fiber composites (AFC) adhered to the surface of a host structure. Large deformation actuating capability is one of important features of AFC. Edge delamination in adhesive layer due to large interfacial shear stress at the free edge is typically resulted from axial strain mismatch between bonded materials. AFC patch possesses very good flexibility and toughness. When an AFC patch is partially delaminated from host structure, there remains sensing capability in the debonded part. The debonding size can be determined through axial resonance measured by the interdigitated electrodes symmetrically aligned on opposite surfaces of the patch. The electrical impedance and modal response of the AFC patch in part adhered to an aluminum plate were investigated in a broad frequency range. Debonding ratio of the AFC patch is in inverse proportion to the resonant frequency of the fundamental mode. Feasibility of in-situ detecting the progressive delamination between AFC patch and host plate is demonstrated.

GaN-based Ultraviolet Passive Pixel Sensor for UV Imager

  • Lee, Chang-Ju;Hahm, Sung-Ho;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.152-156
    • /
    • 2019
  • An ultraviolet (UV) image sensor is an extremely important optoelectronic device used in scientific and medical applications because it can detect images that cannot be obtained using visible or infrared image sensors. Because photodetectors and transistors are based on different materials, conventional UV imaging devices, which have a hybrid-type structure, require additional complex processes such as a backside etching of a GaN epi-wafer and a wafer-to-wafer bonding for the fabrication of the image sensors. In this study, we developed a monolithic GaN UV passive pixel sensor (PPS) by integrating a GaN-based Schottky-barrier type transistor and a GaN UV photodetector on a wafer. Both individual devices show good electrical and photoresponse characteristics, and the fabricated UV PPS was successfully operated under UV irradiation conditions with a high on/off extinction ratio of as high as $10^3$. This integration technique of a single pixel sensor will be a breakthrough for the development of GaN-based optoelectronic integrated circuits.

Remedial Junction of Proton Irradiated Single Walled Carbon Nanotubes using Heat Treatment For Solar Energy Harvesting (태양에너지 획득 양성자 조사 단일벽 탄소나노튜브의 열처리에 의한 교정결합)

  • Kim, Tae Gyu;Park, Young Min;Kim, Young Bae;Kim, Dae Weon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The remedial junction is found in the network of single walled carbon nanotubes after the irradiation of protons not only for the better mechanical strength but also for the higher property of electrical conductivity. The irradiated proton formed a beam transferred sufficient energy to change the sp2 structure of atomic carbon as much as damage of crystalline formation, however it is shown the cross bonding while recovery of structure. This improved network in 2-D atomic chain of carbon is expected to use in a critical part in space energy harvesting system related with the solar radiation.

Process effects on morphology, electrical and optical properties of a-InGaZnO thin films by Magnetic Field Shielded Sputtering

  • Lee, Dong-Hyeok;Kim, Gyeong-Deok;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.217-217
    • /
    • 2016
  • The amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for thin-film transistor (TFT) applications owing to their outstanding electrical properties [1, 2]. However, a-IGZO TFTs have still suffered from their bias instability with illumination [1-4]. Up to now, many researchers have studied the sub-gap density of states (DOS) as the root cause of instability. It is well known that defect states can influence on the performances and stabilities of a-IGZO TFTs. The defects states should be closely related with the deposition condition, including sputtering power, and pressure. Nevertheless, it has not been reported how these defects are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOIs) can be generated by electron attachment in oxygen atom near target surface and then accelerated up to few hundreds eV by a self-bias; at this time, the high energy bombardment of NOIs induce defects in oxide thin films. Recently, we have reported that the properties of IGZO thin films are strongly related with effects of NOIs which are generated during the sputtering process [5]. From our previous results, the electrical characteristics and the chemical bonding states of a-IGZO thin films were depended with the bombardment energy of NOIs. And also, we suggest that the deep sub-gap states in a-IGZO as well as thin film properties would be influenced by the bombardment of high energetic NOIs during the sputtering process.In this study, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process to prevent the NOIs bombardment effects and present how much to be improved the properties of a-IGZO thin film by this new deposition method. We deposited a-IGZO thin films by MFSS on SiO2/p-Si and glass substrate at various process conditions, after which we investigated the morphology, optical and electrical properties of the a-IGZO thin films.

  • PDF

Low Temperature Deposition a-SiNx:H Using ICP Source (ICP Source를 이용한 저온 증착 a-SiNx:H 특성 평가)

  • Kang, Sung-Chil;Lee, Dong-Hyeok;So, Hyun-Wook;Jang, Jin-Nyoung;Hong, Mun-Pyo;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.532-536
    • /
    • 2011
  • The silicon nitride films were prepared by chemical vapor deposition using inductively coupled plasma. During the deposition, the substrate was heated at $150^{\circ}C$ and power 1,000 W. To evolution low temperature manufacture, we have studied the role of source gases, $SiH_4$, $NH_3$, $N_2$, and $H_2$, to produce Si-N and N-H bond in a-SiNx:H film growth. $SiH_4$, $NH_3$, and $N_2$ flow rate fixed at 100, 10, and 10 sccm, $H_2$ flow rate varied from 0 to 10 sccm by small scale. To get the electrical characteristics, we makes MIM structure, and analysis surface bonding state. Experimental data show that Si-N and N-H bond is increased and hence electrical characteristics is showed 3 MV/cm breakdown-voltage, and leakage-current $10^{-7}\;A/cm^2$.

Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface (전기저항 측정법을 이용한 탄소섬유/기지 간 계면에서의 섬유 미끌림 정도 측정방법)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.205-210
    • /
    • 2012
  • The single carbon fiber tensile test was performed with electrical resistance measurement. Tensile property of single carbon fiber which accompanied by the relationship between the electric resistance and the strain was investigated. Since the collected data showed a linear relationship between them, the coefficient of fiber slip ratio (FSR) was obtained by computation. The fragmentation specimen (FS) was tested under tensile loading, and the single carbon fiber broke first due to the stress transferring form matrix to reinforcing fiber. The stress distribution of carbon fiber could be observed via the electrical resistance change. Slipping between carbon fiber and matrix was predicted based on the fragmentation test results, and the FSR was used to evaluate interfacial adhesion comparatively. The large FSR indicated poor interfacial bonding. Work of adhesion between carbon fiber and matrix was measured to verify the FSR method, and two results exhibited a consistent conclusion.

A design of silicon based vertical interconnect for 3D MEMS devices under the consideration of thermal stress (3D MEMS 소자에 적합한 열적 응력을 고려한 수직 접속 구조의 설계)

  • Jeong, Jin-Woo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Vertical interconnection scheme using novel silicon-through-via for 3D MEMS devices or stacked package is proposed and fabricated to demonstrate its feasibility. The suggested silicon-through-via replaces electroplated copper, which is used as an interconnecting material in conventional through-via, with doped silicon. Adoption of doped silicon instead of metal eliminates thermal-mismatch-induced stress, which can make troubles in high temperature MEMS processes, such as wafer bonding and LP-CVD(low pressure chemical vapor deposition). Two silicon layers of $30{\mu}m$ thickness are stacked on the substrate. The through-via arrays with spacing $40{\mu}m$ and $50{\mu}m$ are fabricated successfully. Electrical characteristics of the through-via are measured and analyzed. The measured resistance of the silicon-through-via is $169.9\Omega$.

The Characteristics of Silicon Nitride Films Grown at Low Temperature for Flexible Display (플렉서블 디스플레이의 적용을 위한 저온 실리콘 질화물 박막성장의 특성 연구)

  • Lim, Nomin;Kim, Moonkeun;Kwon, Kwang-Ho;Kim, Jong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.816-820
    • /
    • 2013
  • We investigated the characteristics of the silicon oxy-nitride and nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) at the low temperature with a varying $NH_3/N_2O$ mixing ratio and a fixed $SiH_4$ flow rate. The deposition temperature was held at $150^{\circ}C$ which was the temperature compatible with the plastic substrate. The composition and bonding structure of the nitride films were investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Nitrogen richness was confirmed with increasing optical band gap and increasing dielectric constant with the higher $NH_3$ fraction. The leakage current density of the nitride films with a high NH3 fraction decreased from $8{\times}10^{-9}$ to $9{\times}10^{-11}(A/cm^2$ at 1.5 MV/cm). This results showed that the films had improved electrical properties and could be acceptable as a gate insulator for thin film transistors by deposited with variable $NH_3/N_2O$ mixing ratio.

The Properties of Atomic Layer Deposited Al-Doped ZnO Films Using H2O and O3 As Oxidants (H2O, O3 반응기체로 원자층 증착된 Al-doped ZnO 박막의 특성)

  • Kim, Min Yi;Cho, Young Joon;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.652-657
    • /
    • 2015
  • We have investigated the properties of Al-doped ZnO (AZO) thin films as functions of atomic layer deposition (ALD) oxidants. AZO transparent conducting oxides (TCOs) layer was deposited by ALD with adding trimethylaluminum (TMA) and diethylzinc (DEZn). AZO films were deposited at low temperature with $H_2O$ and $O_3$ as oxidants. Electrical, optical and structural properties of AZO thin films were investigated by 4-point probe, Hall effect measurement, UV-VIS, and AFM. Microstructure and atomic bonding states were investigated by HRXRD and XPS. The resistivity of AZO films grown using $H_2O$ was lower than the films grown using $H_2O$ and $O_3$, by approximately two orders of magnitude. The differences in oxygen vacancy peak intensity of AZO films were correlated to the optical and electrical properties.

A Study on the etching mechanism of $CeO_2$ thin film by high density plasma (고밀도 플라즈마에 의한 $CeO_2$ 박막의 식각 메커니즘 연구)

  • Oh, Chang-Seok;Kim, Chang-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.8-13
    • /
    • 2001
  • Cerium oxide ($CeO_2$) thin film has been proposed as a buffer layer between the ferroelectric thin film and the Si substrate in Metal-Ferroelectric-Insulator-Silicon (MFIS) structures for ferroelectric random access memory (FRAM) applications. In this study, $CeO_2$ thin films were etched with $Cl_2$/Ar gas mixture in an inductively coupled plasma (ICP). Etch properties were measured for different gas mixing ratio of $Cl_2$($Cl_2$+Ar) while the other process conditions were fixed at RF power (600 W), dc bias voltage (-200 V), and chamber pressure (15 mTorr). The highest etch rate of $CeO_2$ thin film was 230 ${\AA}$/min and the selectivity of $CeO_2$ to $YMnO_3$ was 1.83 at $Cl_2$($Cl_2$+Ar gas mixing ratio of 0.2. The surface reaction of the etched $CeO_2$ thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. There is a Ce-Cl bonding by chemical reaction between Ce and Cl. The results of secondary ion mass spectrometer (SIMS) analysis were compared with the results of XPS analysis and the Ce-Cl bonding was monitored at 176.15 (a.m.u). These results confirm that Ce atoms of $CeO_2$ thin films react with chlorine and a compound such as CeCl remains on the surface of etched $CeO_2$ thin films. These products can be removed by Ar ion bombardment.

  • PDF