• Title/Summary/Keyword: Electric railroad

Search Result 504, Processing Time 0.028 seconds

A Study on the Ride Quality Enhancement of the High-speed Electric Multiple Unit (동력분산형 고속열차의 승차감 개선에 관한 연구)

  • Jeon, Chang-Sung;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.561-567
    • /
    • 2018
  • This study was carried out to improve the ride quality of high-speed electric multiple unit. Through dynamic analysis of the HEMU-430X, the range of the equivalent conicity with a critical speed of 300 km/h was between 0.05 and 0.25. The initial adopted wheel profile of HEMU-430X was S1002. The equivalent conicity of S1002 with the mileage of more than 40,000 km was about 0.033 and it was confirmed that XP55 is more suitable for stable operation because XP55 has the equivalent conicity of over 0.061. In order to improve ride quality of high-speed electric multiple unit, the change of installation angle of the yaw damper was suggested from $7.35^{\circ}$ to $0^{\circ}$. From sensitivity analysis and optimization, the air spring lateral and vertical stiffness was suggested to be reduced by 30% and the secondary vertical and lateral damper damping coefficient was increased by 50%. By applying this, it was expected that the car body acceleration could be improved by about 20% on average. The HEMU-430X's yaw damper installation angle was changed to $0^{\circ}$ and the damping coefficient of the lateral damper was increased by 30%. When the test run was carried out at the speed of 300 km/h on the Kyungbu high-speed line, the vehicle lateral acceleration had improved by 34.3%. The effect of additional improvement measures proposed in this paper will be tested in the on track test. The riding quality improvement process used in this study can be used to solve ride quality problems that can occur in commercial operation of high-speed electric multiple unit in the future.

Compensation of Instantaneous Voltage Drop at AC Railroad System with Single-Phase Distributed STATCOM (전기철도 급전시스템의 순시전압강하 보상을 위한 단상 배전 STATCOM의 적용)

  • Kim, Jun-Sang;Lee, Seung-Hyuk;Kim, Jin-O;Lee, Jun-Kyung;Jung, Hyun-Soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2007
  • An AC electrical railroad system has rapidly changing dynamic single-phase load, and at a feeding substation, three-phase electric power is transformed to the paired directional single-phase electric power. There is a great difference in electrical phenomenon between the load of AC electrical railroad system and that of general power system. Electric characteristics of AC electrical railroad's trainload are changed continuously according to the traction, operating characteristic, operating schedule, track slope, etc. Because of the long feeding distance of the dynamic trainload, power quality problems such as voltage drop, voltage imbalance and harmonic distortion my also occur to AC electrical railroad system. These problems affect not only power system stability, but also power quality deterioration in AC electrical railroad system. The dynamic simulation model of AC electrical railroad system presented by PSCAD/EMTDC is modeled in this paper, andthen, it is analyzed voltage drop for AC electrical railroad system both with single-phase distributed STATCOM(Static Synchronous Compensator) installed at SP(Sectioning Post) and without.

Numerical Analyses on Moment Resisting Behaviors of Electric Pole Foundations According to Their Shapes (기초형상에 따른 전철주기초 모멘트 저항거동에 관한 수치해석 연구)

  • Lee, Su-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.85-97
    • /
    • 2013
  • Electric pole foundations for overhead catenary system of railroad should be designed so that they may resist significant overturning moment but relatively small vertical forces. Also they should have proper shapes to be installed at restricted narrow areas adjacent to railroad track. In this paper the moment responses of rectangular pole foundations according to their shapes were investigated numerically. A three-dimensional finite element method was developed and verified so that the numerical behaviors of the foundation resisting the overturning moments were compared reasonably well with those from an existing real-scale load test. The influences of aspect ratio, varying section with depth and loading directions for rectangular section were investigated using the developed numerical method. From the numerical results, the optimized shapes of pole foundation for more effective and economic installation adjacent to railroad track are proposed.

A Study on the Protection System on the Electric Railways (전철급전회로 보호시스템에 관한 연구)

  • Chang, Sang-Hoon;Lee, Chang-Moo;Han, Moon-Seob;Oh, Kwang-Hae;Shin, Han-Soon;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1166-1169
    • /
    • 1998
  • The Load characteristic of electric railway requires the power demand of the high capacity which amplitude is spacial-temporally fluctuated due to frequent starting and stopping with large tractive force. The conventional electric railway mainly consists of the resistance controlled and the thyristor controlled locomotives, are compensated for their bad characteristics of the power factor$(70\sim80%)$ with installation of another capacitor improving power factor at the substation. Since 1994, VVVF train car with good characteristics of power factor(100%) have been introduced and operated in Kwa-Chon Line. From the present technical tendency, it is judged that introduction of the locomotive with various controlled methods is necessary. The protective equipments installed at the substation are complicated and various aspects to detect faults and reduce their extension, so the universal countermeasures are required. Specially in the case of the fault occurrence it is difficult to calculate the fault location because of the change in the contactline constant according to modifying the characteristics of the contactline (the dualized catenary wire and extension, etc), so much time is required for the detection of fault location. In BT-fed method distance-relays and fault-locators are not installed, we have so many difficulties in the quick accident recovery.

  • PDF

Countermeasures to Irregulor Abrasion of Section Insulators for Electric Railroad Catenary (전차선 절연구분장치 절연재의 이상마모 대책)

  • 최규형
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.87-94
    • /
    • 2002
  • As a section insulator dividing the electric railroad catenaries with different phases, the AC/DC section insulator which divides AC and DC railroad catenary have the complex structure, and suffer irregular abrasion on the surface or insulator rods when it is installed at the underground railroad. This paper intended as an investigation of the irregular abrasion of section insulators, provides the field measurements of abrasion level along insulator length and the abrasion patterns. The height variation of insulator parts and the balding length of insulators against pantograph's contact force are analysed experimentally, and the irregular abrasion mechanism is clarified with the help of theoretical analysis on the interaction between pantographs and section insulators. On the basis of experimental and theoretical analysis, the countermeasures to reduce the irregular abrasion are provided too.

Efficiency Improvement Effect Analysis for Marginal Storage Capacity in DC Electric Railway Systems (직류도시철도 시스템에서 저장장치 단위 용량 당 에너지 절감 효과 분석 연구)

  • Lee, Hansang;Yoon, Donghee;Kim, Hyungchul;Joo, Sung-Kwan;Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1159-1163
    • /
    • 2014
  • This paper have been dealt with the analysis for energy efficiency improvement effect of unity storage capacity as a part of the energy storage application study to improve energy efficiency in the electric railway systems. Especially, in order to estimate the amount of energy saving according to the variation of power capacity of each storage, the current limit module was mounted on an existing DC electric railway loadflow program which is based on the analysis model for railway system and storages, and combined optimization algorithm to determine optimal voltage boundary.

Reliability Analysis of Train Ethernet Backbone (Train Ethernet Backbone(TEB) 구성에 따른 신뢰도 분석)

  • Kim, Joonkyo;Park, Jaehyun;Oh, Yongkuk;Hwang, Hyeoncheon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.414-416
    • /
    • 2013
  • As the usage of the electric power train increases, the importance of the control network between the electric control devices grows. IEC proposed a revision of IEC-61375, a standard of the networking among electric devices within a train, to adopt Ethernet as a backbone of train network. This paper performed the reliability analysis of three configurations of Ethernet-based networking within a electric power train that are recommended in IEC-61375 standard. The analysis results show that MTTF(mean time to failure) of the redundant configuration is 20,086 hours, which is a about 3 times longer than the linear configuration.

Development and Performance Test of DC Smart Metering System for the DC Power Measurement of Urban Railway (도시철도 직류 전력량 계측을 위한 직류용 스마트미터링 시스템 개발 및 성능시험)

  • Jung, Hosung;Shin, Seongkuen;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.713-718
    • /
    • 2014
  • DC urban railway power system consists of DC power network and AC power network. The DC power network supplies electric power to railway vehicles and the AC power network supplies electric power to station electric equipment. Recently, because of power consumption reduction and peak load shaving, intelligent measurement of regenerative energy and renewable energy adapted on DC urban railway is required. For this reason, DC smart metering system for DC power network shall be developed. Therefore, in this paper, DC voltage sensor, current sensor, and DC smart meter were developed and evaluated by performance test. DC voltage sensor was developed for measuring standard voltage range of DC urban railway, and DC current sensor was developed as hall effect split core type in order to install in existing system. DC smart meter possesses function of general intelligent electric power meter, such as measuring electricity and wireless communication etc. And, DC voltage sensor showed average 0.17% of measuring error for 2,000V/50mA, and current sensor showed average 0.21% of measuring error for ${\pm}2,000V/{\pm}4V$ in performance test. Also DC smart meter showed maximum 0.92% of measuring error for output of voltage sensor and current sensor. In similar environment for real DC power network, measuring error rate was under 0.5%. In conclusion, accuracy of DC smart metering system was confirmed by performance test, and more detailed performance will be verified by further real operation DC urban railway line test.

Comparison of AC Electric Railway System Model using the EMTDC (EMTDC 및 수 계산에 의한 교류 전철급전시스템 사고 해석)

  • Lee, Han-Min;Oh, Kwang-Hae;Han, Moon-Sub;Lee, Chang-Mu;Chang, Sang-Hoon;Jang, Dong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.395-398
    • /
    • 2003
  • This study presents wrong hand calculations for fault analysis at field on the real AC railway system. Hence, we correctly revised the hand calculations. We propose AC railway system model by using EMTDC. Fault studies are performed. We also compare revised hand calculations with EMTDC simulation to verify the proposed model made by EMTDC. So, we can confirm that the model made by using EMTDC is correctly designed.

  • PDF

Design of Condition Judgment System for DC Power Overload on Electric Railway (전기철도 DC 전력설비 과부하 상태판단 기술 설계)

  • Park, Young;Park, Chul-Min;Kwon, Sam-Young;Lee, Ki-Won;Cho, Yong-Hyeon;Na, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2212-2212
    • /
    • 2011
  • 현재 국내의 경우 설비의 열화 상태 및 그 경향을 파악하여 부적합한 상태를 파악하기 위한 다양한 상태판단 기술이 개발되고 있다. 본 논문에서는 전기철도 DC 전력설비 과부하 상태판단 기술과 설계 방향에 관하여 기술하였다. 또한 실용적 리뉴얼 방향과 실용적교체 기준의 국내외 기법을 조하하여 이를 적용하기 위한 기술연구를 수행하였으며 이를 바탕으로 도시철도 전력설비의 실태진단을 위한 노후화 시스템 교체 기준 수립의 기초 연구 및 기본 조사 방향이 되고자 하였다.

  • PDF