• Title/Summary/Keyword: Electric flash

Search Result 59, Processing Time 0.028 seconds

Electric and Electronic Systems for the 21st Century Automobile (21세기 자동차를 위한 전기.전자 시스템)

  • SunWoo, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.451-453
    • /
    • 1998
  • Global competition of automotive market, affordable prices of electronic components, and tougher regulations on emission, fuel economy, and safety become the major reason that automotive industries rapidly employ a large number of electric and electronic systems. Considering that the application of electronic technologies for automobile is increasing at a rapid rate, it would be worthwhile to evaluate the trend of the uses of major electric and electronic systems for the 21st century vehicle. The major technology will be leaded by 32/64-bit microcontroller, on-chip flash memory, hybrid ASICs, IGBT, and smart sensors.

  • PDF

Performance and SILC Characteristics of Flash Memory Cell With Ultra thin $N_2O$ Annealed Tunneling Oxide (초박막의 $N_2O$ 어닐링한 터널링 산화막을 갖는 Flash Memory Cell의 SILC 특성 및 성능)

  • Son, Jong-Hyoung;Chong, Jong-Wha
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.1-8
    • /
    • 1999
  • In this paper, we have studies the transport mechanism and origin of SILC for the various thickness of wet oxide. Also, SILC characteristics of $N_2O$ annealed oxide was included in this study. We made the flash memory cell with $N_2O$ annealed oxide of 60Athick under $0.25{\mu}m$ design rule, and measured the characteristics of the cell. As a result, we have found that the origin of SILC is due to the trap formed inside of the oxide layer by electrical stress. And we reached the conclusion that the transport mechanism of SILC is ruled by the modified F-N tunneling if the electric field is lower than 8MV/cm or typical F-N tunneling if the electric field is higher than 8MV/cm. We could also confirm the fact that $N_2O$ annealed oxide of 60Athick have an improved resistance effect against SILC. In case that we apply $N_2O$ annealed oxide of 60Athick to the flash memory, we could confirm $10^6$ times endurance and more than 10 years drain disturb, and could get 8V programmable flash memory characteristics.

  • PDF

Characteristics Analysis Related with Structure and Size of SONOS Flash Memory Device (SONOS 플래시 메모리 소자의 구조와 크기에 따른 특성연구)

  • Yang, Seung-Dong;Oh, Jae-Sub;Park, Jeong-Gyu;Jeong, Kwang-Seok;Kim, Yu-Mi;Yun, Ho-Jin;Choi, Deuk-Sung;Lee, Hee-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.676-680
    • /
    • 2010
  • In this paper, Fin-type silicon-oxide-nitride-oxide-silicon (SONOS) flash memory are fabricated and the electrical characteristics are analyzed. Compared to the planar-type SONOS devices, Fin-type SONOS devices show good short channel effect (SCE) immunity due to the enhanced gate controllability. In memory characteristics such as program/erase speed, endurance and data retention, Fin-type SONOS flash memory are also superior to those of conventional planar-type. In addition, Fin-type SONOS device shows improved SCE immunity in accordance with the decrease of Fin width. This is known to be due to the fully depleted mode operation as the Fin width decreases. In Fin-type, however, the memory characteristic improvement is not shown in narrower Fin width. This is thought to be caused by the Fin structure where the electric field of Fin top can interference with the Fin side electric field and be lowered.

The Design of Flash Lantern using LED for aironautical ground lights (LED를 이용한 항공등의 점멸 방법에 대한 연구)

  • Jeong, Hak-Geun;Jung, Bong-Man;Park, Suk-In;Yu, Seung-Won;Shin, Kyu-Yong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.157-159
    • /
    • 2006
  • The advantages of LED(Light Emitting Diode) are low electric power consumption, long life time and excellent visibility. And a LED light source does not include the mercury(Hg) and or a filament, it is expected as an environmentally friendly next generation light source with its good reliability. In order to design and develope the flash lantern using LED for aironautical ground lights, technical trends and new standards about the aironautical ground lights were inspected, and power consumption and flash time for effective luminous intensity of aironautical ground lights were analyzed.

  • PDF

A Study on the Solar-OTEC Convergence System for Power Generation and Seawater Desalination (발전 및 해수담수화를 위한 태양열-해양온도차 복합 시스템에 대한 연구)

  • Park, Sung-Seek;Kim, Woo-Joong;Kim, Yong-Hwan;Jeon, Yong-Han;Hyun, Chang-Hae;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.73-81
    • /
    • 2014
  • Ocean thermal energy conversion(OTEC) is a power generation method that utilizes temperature difference between the warm surface seawater and cold deep sea water of ocean. As potential sources of clean-energy supply, Ocean thermal energy conversion(OTEC) power plants' viability has been investigated. Therefore, this paper evaluated the thermodynamic performance of solar-OTEC convergence system for the production with electric power and desalinated water. The comparison analysis of solar-OTEC convergence system performance was carried out as the fluid temperature, saturated temperature difference and pressure of flash evaporator under equivalent conditions. As a results, maximum system efficiency, electric power and fresh water output show at 40, 10, 2.5 kPa of the flash evaporator pressure, respectively. And their respective enhancement ratios were approximately 6.1, 18, 8.6 times higher than that of the base open OTEC system. Also, performance of solar-OTEC system is the highest in the flash evaporator pressure of 10 kPa.

Trap Generation Analysis by Program/Erase Speed Measurements in 50 nm Nand Flash Memory (50nm 급 낸드플래시 메모리에서의 Program/Erase 스피드 측정을 통한 트랩 생성 분석)

  • Kim, Byoung-Taek;Kim, Yong-Seok;Hur, Sung-Hoi;Yoo, Jang-Min;Roh, Yong-Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • A novel characterization method was investigated to estimate the trap generation during the program /erase cycles in nand flash memory cell. Utilizing Fowler-Nordheim tunneling current, floating gate potential and oxide electric field, we established a quantitative model which allows the knowledge of threshold voltage (Vth) as a function of either program or erase operation time. Based on our model, the derived results proved that interface trap density (Nit) term is only included in the program operation equation, while both Nit and oxide trap density (Not) term are included in the erase operation equation. The effectiveness of our model was tested using 50 nm nand flash memory cell with floating gate type. Nit and Not were extracted through the analysis of Program/Erase speed with respect to the endurance cycle. Trap generation and cycle numbers showed the power dependency. Finally, with the measurement of the experiment concerning the variation of cell Vth with respect to program/erase cycles, we obtained the novel quantitative model which shows similar results of relationship between experimental values and extracted ones.

A Study on the Corner Effect of Fin-type SONOS Flash Memory Using TCAD Simulation (TCAD 시뮬레이션을 이용한 Fin형 SONOS Flash Memory의 모서리 효과에 관한 연구)

  • Yang, Seung-Dong;Oh, Jae-Sub;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Lee, Sang-Youl;Lee, Hee-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.100-104
    • /
    • 2012
  • Fin-type SONOS (silicon-oxide-nitride-oxide-silicon) flash memory has emerged as novel devices having superior controls over short channel effects(SCE) than the conventional SONOS flash memory devices. However despite these advantages, these also exhibit undesirable characteristics such as corner effect. Usually, the corner effect deteriorates the performance by increasing the leakage current. In this paper, the corner effect of fin-type SONOS flash memory devices is investigate by 3D Process and device simulation and their electrical characteristics are compared to conventional SONOS devices. The corner effect has been observed in fin-type SONOS device. The reason why the memory characteristic in fin-type SONOS flash memory device is not improved, might be due to existing undesirable effect such as corner effect as well as the mutual interference of electric field in the fin-type structure as reported previously.

A Subthreshold Slope and Low-frequency Noise Characteristics in Charge Trap Flash Memories with Gate-All-Around and Planar Structure

  • Lee, Myoung-Sun;Joe, Sung-Min;Yun, Jang-Gn;Shin, Hyung-Cheol;Park, Byung-Gook;Park, Sang-Sik;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • The causes of showing different subthreshold slopes (SS) in programmed and erased states for two different charge trap flash (CTF) memory devices, SONOS type flash memory with gate-all-around (GAA) structure and TANOS type NAND flash memory with planar structure were investigated. To analyze the difference in SSs, TCAD simulation and low-frequency noise (LFN) measurement were fulfilled. The device simulation was performed to compare SSs considering the gate electric field effect to the channel and to check the localized trapped charge distribution effect in nitride layer while the comparison of noise power spectrum was carried out to inspect the generation of interface traps ($N_{IT}$). When each cell in the measured two memory devices is erased, the normalized LFN power is increased by one order of magnitude, which is attributed to the generation of $N_{IT}$ originated by the movement of hydrogen species ($h^*$) from the interface. As a result, the SS is degraded for the GAA SONOS memory device when erased where the $N_{IT}$ generation is a prominent factor. However, the TANOS memory cell is relatively immune to the SS degradation effect induced by the generated $N_{IT}$.

Voltage waveform detection of discharge breaking process used pulsed-power technique (펄스파워 기술을 이용한 방전파쇄과정의 전압파형 검출)

  • Chung, Y.H.;Yoon, S.H.;Lee, Y.S.;Lee, D.H.;Kim, H.J.;Cho, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2195-2197
    • /
    • 1999
  • Electric breakdown in the liquid produces a spark channel. The energy input into the channel causes expansion of a vapor gas cavity. If the power of the discharge is high enough, this expansion is fast enough to produce a shock wave which propagates through the liquid to the subject of destruction. We focused our attention on the correlation between electric parameters and the characteristics of the flash caused by point to-point electrode discharge in the water. By varying firing voltage and gap length, we obtained the features of the flash : amplitude, pulse width, and so on. In this paper, We have known that there is a concrete interrelation between underwater firing voltage and photodiode output.

  • PDF

An Audio Comparison Technique for Verifying Flash Memories Mounted on MP3 Devices (MP3 장치용 플래시 메모리의 오류 검출을 위한 음원 비교 기법)

  • Kim, Kwang-Jung;Park, Chang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.41-49
    • /
    • 2010
  • Being popularized the use of portable entertainment/information devices, the demand on flash memory has been also increased radically. In general, flash memory reveals various error patterns by the devices it is mounted, and thus the memory makers are trying to minimize error ratio in the final process through not only the electric test but also the data integrity test under the same condition as real application devices. This process is called an application-level memory test. Though currently various flash memory testing devices have been used in the production lines, most of the works related to memory test depend on the sensual abilities of human testers. In case of testing the flash memory for MP3 devices, the human testers are checking if the memory has some errors by hearing the audio played on the memory testing device. The memory testing process like this has become a bottleneck in the flash memory production line. In this paper, we propose an audio comparison technique to support the efficient flash memory test for MP3 devices. The technique proposed in this paper compares the variance change rate between the source binary file and the decoded analog signal and checks automatically if the memory errors are occurred or not.