• 제목/요약/키워드: Electric control unit

Search Result 309, Processing Time 0.03 seconds

A Study on Performance Evaluation and Security Methods of u-IT Electrical Safety Integrated Management System's Module (u-IT 전기안전통합관리시스템의 모듈별 성능평가와 보안방법 연구)

  • Park, Dae-Woo;Kim, Eung-Sik;Choi, Choung-Moon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1447-1452
    • /
    • 2010
  • Ubiquitous society to build basic infrastructure in the power supply and power equipment safety is important. u-City in order to prevent the disaster of u-IT Power Equipment Performance Module and the security for the safety of the u-City is necessary. In this paper, the power unit of u-IT module, temperature sensor, humidity sensor, equipped with sensors arranged throughout the fire, and home distribution boards, Home Network Wall-Pad, Blocker, MPNP black boxes, arc detection, arc safety equipment, outlet of the modular performance evaluation methods and security methods will be studied. u-IT power devices and sensors to analyze the information conveyed by proactive risk and ensure safety, access control, authentication, security safeguards, such as u-IT integrated management system for electrical safety and strengthen the security, safety and security with a u-City will contribute to the construction and operation.

Flow Characteristics of Central-Driven Ejector with Design Parameters (중앙구동 이젝터의 설계변수에 따른 유동특성)

  • Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.645-651
    • /
    • 2015
  • The objective of this study is to experimentally investigate the effect of design parameter on the mass ratio of a central-driven ejector. The design parameters are the primary nozzle area and distance ratios, diffuser exit-area ratio and mixing-tube length ratio. The experimental setup was an open-loop continuous circulation system which has a movable nozzle ejector, an electric motor-pump, a water tank, a control panel and high-speed camera unit. We calculated the mass ratio using the measured primary and suction-flow rates with the experimental parameter of primary water-flow rate or pressure. The results showed that the mass ratio increased with the primary nozzle distance ratio and mixing tube length ratio, while the mass ratio decreased with the primary nozzle-area ratio and diffuser exit-area ratio.

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit (전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석)

  • Suh, Il Woong;Lee, Young-ho;Kim, Young-hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization

Design of a 50kW Class Rotating Body Type Highly Efficient Wave Energy Converter (50kW급 가동물체형 고효율 파력발전시스템 설계)

  • Cho, Byung-Hak;Yang, Dong-Soon;Park, Shin-Yeol;Choi, Kyung-Shik;Park, Byung-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2011
  • A 50 kW class rotating body type wave energy converter consisted of two floating bodies and a PTO (Power Takeoff) unit is studied. As an wave energy extractor, the body is designed to have a VLCO (Variable Liquid-Column Oscillator) having a liquid filled U-tube with air chambers. Owing to the oscillation of the liquid in the U-tube caused by the air spring effect of the air chambers, the amplitude of response of the VLCO becomes significantly amplified for a target wave period. The PTO converts the rotational moment introduced from the relative motion of the hinged bodies to an hydraulic power by means of a cylinder. A high pressure accumulator, hydraulic motor and a generator are equipped in the PTO to convert the hydraulic power to electric power. A control law for adjusting the oscillation period of the VLCO is proposed for the efficient operation of the VLCO with various wave conditions. It is found that the effect of the air spring has an important role to play in making the oscillation of the VLCO match with the ocean wave. In this way, the wave energy converter equipped with the VLCO provides the most effective mode for extracting energy from the ocean wave.

Joint Property of Sn-Cu-Cr(Ca) Middle Temperature Solder for Automotive Electronic Module (자동차 전장모듈용 Sn-Cu-Cr(Ca) 중온 솔더의 접합특성 연구)

  • Bang, Junghwan;Yu, Dong-Yurl;Ko, Yong-Ho;Kim, Jeonghan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.54-58
    • /
    • 2013
  • Joint properties of vehicle ECU (Electric Control Unit) module which was manufactured by using Sn-Cu-Cr-Ca alloy were investigated. A new solder which has a middle melting temperature about $231^{\circ}C$ was fabricated as the type of 300um solder ball and paste type. The prototype modules were made by reflow process and measured spreadability, wettability shear strength and estimated interface reaction. The spreadability of the alloy was about 84% from the measurement of contact angle of the solder ball and the wetting force was measured 2mN. The average shear strength of the module which was manufactured by using the solder paste, was 1.9 $kg/mm^2$. Also, the thickness of IMC(intermetallic compound) was evaluated with various aging temperature and time in order to understand Cr effect on Sn-0.7Cu solder. $Cu_6Sn_5$ IMC was formed between Cu pad and the solder alloy and the average thickness of the $Cu_6Sn_5$ IMC was measured about 4um and it was about 50% of thickness of $Cu_6Sn_5$ IMC in Sn-0.7Cu. It is expected to have a positive effect on reliability of the solder joint.

Study on the High Efficiency Design of IE4 Synchronous Reluctance Motor Replacing IE3 Induction Motor (블로워용 IE3 유도전동기 대체 IE4 동기 릴럭턴스 전동기 고효율 설계 연구)

  • Liu, Huai-Cong;Kim, In-Gun;Jeong, Je-Myung;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.411-418
    • /
    • 2016
  • In accordance with global energy conservation policies such as MEPS(Minimum Energy Performance Standard), electric motor industry is moving to super-high-efficiency machines and research to develop IE4 (International Energy Efficiency Class4) motors has been launched. In this situation, SynRM (Synchronous Reluctance Motor) has been attracting attention in place of induction motor which hardly provides super premium efficiency. As a result, much research on SynRM is being performed at home and abroad. Also, some products have already been appearing in the market. Compared to induction motor, SynRM has better efficiency per unit area and wider operating range. Although the utilization of control system in synchronous motor results in higher prices, we still need to concentrate on developments of SynRM so as to comply with the new policies. This study demonstrated the electromagnetic design methods of super-premium SynRM while maintaining the frame of existing IE3 induction motor for blower. We documented the design procedures for generating high saliency which is the most essential and mechanical stress analysis is also treated. In conclusion, we proved the validity of our design by manufacturing and testing our SynRM models.

Patient-Controlled Analgesia(PCA) for Pain Management after Gynecological Surgery (Baxter $Infusor^{(R)}$를 이용한 부인과 수술후의 통증 자가 조절)

  • Lee, Jung-Koo;Kim, Jin-Mo;Chung, Jung-Kil
    • The Korean Journal of Pain
    • /
    • v.6 no.1
    • /
    • pp.49-54
    • /
    • 1993
  • The use of intravenous patient-controlled analgesia is an effective and increasingly used means of providing postoperative pain relief. Recently a non-electric, disposable and portable infusor, the Baxter $Infusor^{(R)}$, has developed. This delivers not only a continuous drug infusion but can also deliver extradoses of medication on demand. The present study examined the benefits of two kinds of analgesics for pain management in 28 patients undergoing gynecological surgery. One group, 14 patients, received i.v. meperidine 0.5 mg/kg as loading dose in the recovery room and PCA with meperidine 3 mg/kg/day for 3 days only(M group). In the other group, 14 patients, also received i.v. meperidine 0.5 mg/kg as loading dose in the recovery room and PCA meperidine 3 mg/kg/day for 3 days and droperidol 5 mg(MD group). The PCA device used was the Baxter $Infusor^{(R)}$. This unit was fitted with patient control module which had a flow rate 0.5 ml/hr and the lockout time was 15 min. Resulting from the study, the MD patients in the first and second days post-operatively, reported less pain compared with the M group. VAPS(Visual Analogue Pain Scales) values were $3.52{\pm}l.61$ vs. $2.22{\pm}0.69$, $2.38{\pm}1.12$ vs. $1.45{\pm}0.48$ and $1.93{\pm}1.65$ vs. $0.98{\pm}0.36$, respectively pertaining to M and MD groups. In conclusion, the MD group with meperidine and droperidol(mixed regimen) provided more effective postoperative analgesia than M group(meperidine only).

  • PDF

Characteristics Test and Model Parameter Determination of Generator/Excitation System of Yeongdong Unit 1 due to Conversion of Renewable Generation Fuel (신재생 발전 연료전환에 따른 영동1호기 발전기/제어계 특성시험 및 모델정수 도출)

  • Mun, Jeong-Min;Lee, Tae-kyu;Shin, Woo-Ju;Kim, Jeong-Uk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.586-593
    • /
    • 2019
  • In this paper, we introduce the wood pellet electric power generation system, which is an eco - friendly solid fuel processed pure wood, which is one of the largest capacity renewable power fuels in Korea, The Ministry of Commerce, Industry and Energy notified the Ministry of Land, Infrastructure, Transport and Tourism of the Ministry of Land, Transport and Maritime Affairs of the Ministry of Land, Transport and Maritime Affairs. Derived and validated. It is confirmed that the performance of the generator and the voltage control characteristics of excitation system are good even for the change of generator fuel. It can contribute to future reference at the plant that wants to replace fossil fuels with renewable fuels.

Optimization of Gate and Process Design Factors for Injection Molding of Automotive Door Cover Housing (자동차 도어용 커버 하우징의 사출성형을 위한 게이트 및 공정 설계인자의 최적화)

  • Yu, Man-Jun;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.84-90
    • /
    • 2022
  • The purpose of the cover housing component of a car door is to protect the terminals of the plug housing that connects the electric control unit on the door side to the car body. Therefore, for a smooth assembly with the plug housing and to prevent contaminants from penetrating into the gaps that occur after assembly, the warpage of the cover housing should be minimized. In this study, to minimize the warpage of the cover housing, optimization was performed for design factors related to the mold and processes based on the injection molding simulation. These design factors include gate location, gate diameter, injection time, resin temperature, mold temperature, and packing pressure. To optimize the design factors, Taguchi's approach to the design of experiments was adopted. The optimal combination of the design factors and levels that minimize warpage was predicted through L18-orthogonal array experiments and main effects analysis. Moreover, the warpage under the optimal design was estimated by the additive model, and it was confirmed through the simulation experiment that the estimated result was quite consistent with the experimental result. Additionally, it was found that the warpage under the optimal design was significantly improved compared to both the warpage under the initial design and the best warpage among the orthogonal array experimental results, which numerically decreased by 36.9% and 23.4%, respectively.

Development of exothermic system based on internet of things for preventing damages in winter season and evaluation of applicability to railway vehicles

  • Kim, Heonyoung;Kang, Donghoon;Joo, Chulmin
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.653-660
    • /
    • 2022
  • Gravel scattering that is generated during operation of high-speed railway vehicle is cause to damage of vehicle such as windows, axle protector and so on. Especially, those are frequently occurred in winter season when snow ice is generated easily. Above all, damage of vehicle windows has not only caused maintenance cost but also increased psychological anxiety of passengers. Various methods such as heating system using copper wire, heating jacket and heating air are applied to remove snow ice generated on the under-body of vehicle. However, the methods require much run-time and man power which can be low effectiveness of work. Therefore, this paper shows that large-area heating system was developed based on heating coat in order to fundamentally prevent snow ice damage on high-speed railway vehicle in the winter season. This system gives users high convenience because that can remotely control the heating system using IoT-based wireless communication. For evaluating the applicability to railroad sites, a field test on an actual high-speed railroad operation was conducted by applying these techniques to the brake cylinder of a high-speed railroad vehicle. From the results, it evaluated how input voltage and electric power per unit area of the heating specimen influences exothermic performance to draw the permit power condition for icing. In the future, if the system developed in the study is applied at the railroad site, it may be used as a technique for preventing all types of damages occurring due to snow ice in winter.