• Title/Summary/Keyword: Einstein-Weyl structure

Search Result 6, Processing Time 0.057 seconds

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik;Pyo, Yong-Soo;Shin, Young-Lim
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.503-515
    • /
    • 2011
  • Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.

R-CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.193-203
    • /
    • 2002
  • Weyl structure can be viewed as generalizations of Riemannian metrics. We study Weyl structures which are critical points of the squared L$^2$ norm functional of the full curvature tensor, defined on the space of Weyl structures on a compact 4-manifold. We find some relationship between these critical Weyl structures and the critical Riemannian metrics. Then in a search for homogeneous critical structures we study left-invariant metrics on some solv-manifolds and prove that they are not critical.

4-DIMENSIONAL CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.551-564
    • /
    • 2001
  • We view Weyl structures as generalizations of Riemannian metrics and study the critical points of geometric functional which involve scalar curvature, defined on the space of Weyl structures on a closed 4-manifold. The main goal here is to provide a framework to analyze critical Weyl structures by defining functionals, discussing function spaces and writing down basic formulas for the equations of critical points.

  • PDF

RECENT DEVELOPMENTS IN DIFERENTIAL GEOMETRY AND MATHEMATICAL PHYSICS

  • Flaherty, F.J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.31-37
    • /
    • 1987
  • I want to focus on developments in the areas of general relativity and gauge theory. The topics to be considered are the singularity theorms of Hawking and Penrose, the positivity of mass, instantons on the four-dimensional sphere, and the string picture of quantum gravity. I should mention that I will not have time do discuss either classical mechanics or symplectic structures. This is especially unfortunate, because one of the roots of differential geometry is planted firmly in mechanics, Cf. [GS]. The French geometer Elie Cartan first formulated his invariant approach to geometry in a series of papers on affine connections and general relativity, Cf. [C]. Cartan was trying to recast the Newtonian theory of gravity in the same framework as Einstein's theory. From the historical perspective it is significant that Cartan found relativity a convenient framework for his ideas. As about the same time Hermann Weyl in troduced the idea of gauge theory into geometry for purposes much different than those for which it would ultimately prove successful, Cf. [W]. Weyl wanted to unify gravity with electromagnetism and though that a conformal structure would fulfill thel task but Einstein rebutted this approach.

  • PDF

STRESS-ENERGY TENSOR OF THE TRACELESS RICCI TENSOR AND EINSTEIN-TYPE MANIFOLDS

  • Gabjin Yun
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.255-277
    • /
    • 2024
  • In this paper, we introduce the notion of stress-energy tensor Q of the traceless Ricci tensor for Riemannian manifolds (Mn, g), and investigate harmonicity of Riemannian curvature tensor and Weyl curvature tensor when (M, g) satisfies some geometric structure such as critical point equation or vacuum static equation for smooth functions.