• Title/Summary/Keyword: Einstein manifold

Search Result 175, Processing Time 0.028 seconds

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.

ON THE *g-ME-CONNECTION AND THE *g-ME-VECTOR IN *g-MEXn

  • Yoo, Ki-Jo
    • Honam Mathematical Journal
    • /
    • v.30 no.4
    • /
    • pp.603-616
    • /
    • 2008
  • A generalized n-dimensional Riemannian manifold $X_n$ on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$, satisfying certain conditions, through the $^*g$-ME-connection which is both Einstein's equation and of the form(3.1) is called $^*g$-ME-manifold and we denote it by $^*g-MEX_n$. In this paper, we prove a necessary and sufficient condition for the existence of $^*g$-ME-connection and derive a surveyable tensorial representation of the $^*g$-ME-connection and the $^*g$-ME-vector in $^*g-MEX_n$.

ON THE REPRESENTATION OF THE *g-ME-VECTOR IN *g-MEXn

  • Yoo, Ki-Jo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.495-510
    • /
    • 2010
  • An Einstein's connection which takes the form (2.23) is called a $^*g$-ME-connection and the corresponding vector is called a $^*g$-ME-vector. The $^*g$-ME-manifold is a generalized n-dimensional Riemannian manifold $X_n$ on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$, satisfying certain conditions, through the $^*g$-ME-connection and we denote it by $^*g-MEX_n$. The purpose of this paper is to derive a general representation and a special representation of the $^*g$-ME-vector in $^*g-MEX_n$.

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.

STABLE MINIMAL HYPERSURFACES IN A CRITICAL POINT EQUATION

  • HWang, Seung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.775-779
    • /
    • 2005
  • On a compact n-dimensional manifold $M^n$, a critical point of the total scalar curvature functional, restricted to the space of metrics with constant scalar curvature of volume 1, satifies the critical point equation (CPE), given by $Z_g\;=\;s_g^{1\ast}(f)$. It has been conjectured that a solution (g, f) of CPE is Einstein. The purpose of the present paper is to prove that every compact stable minimal hypersurface is in a certain hypersurface of $M^n$ under an assumption that Ker($s_g^{1\ast}{\neq}0$).

4-DIMENSIONAL CRITICAL WEYL STRUCTURES

  • Kim, Jong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.551-564
    • /
    • 2001
  • We view Weyl structures as generalizations of Riemannian metrics and study the critical points of geometric functional which involve scalar curvature, defined on the space of Weyl structures on a closed 4-manifold. The main goal here is to provide a framework to analyze critical Weyl structures by defining functionals, discussing function spaces and writing down basic formulas for the equations of critical points.

  • PDF

SOME DOUBLY-WARPED PRODUCT GRADIENT RICCI SOLITONS

  • Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.625-635
    • /
    • 2016
  • In this paper, we study certain doubly-warped products which admit gradient Ricci solitons with harmonic Weyl curvature and non-constant soliton function. The metric is of the form $g=dx^2_1+p(x_1)^2dx^2_2+h(x_1)^2\;{\tilde{g}}$ on ${\mathbb{R}}^2{\times}N$, where $x_1$, $x_2$ are the local coordinates on ${\mathbb{R}}^2$ and ${\tilde{g}}$ is an Einstein metric on the manifold N. We obtained a full description of all the possible local gradient Ricci solitons.

NIJENHUIS TENSOR FUNCTIONAL ON A SUBSPACE OF METRICS

  • Kang, Bong-Koo
    • The Pure and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.13-18
    • /
    • 1994
  • The study of the integral of the scalar curvature, $A(g)\;=\;{\int}_M\;RdV_9$ as a functional on the set M of all Riemannian metrics of the same total volume on a compact orient able manifold M is now classical, dating back to Hilbert [6] (see also Nagano [8]). Riemannian metric g is a critical point of A(g) if and only if g is an Einstein metric.(omitted)

  • PDF

TOPOLOGICAL ASPECTS OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.477-485
    • /
    • 2005
  • Let ($M^n$, g) be a compact oriented Riemannian manifold. It has been conjectured that every solution of the equation $z_g=D_gdf-{\Delta}_gfg-fr_g$ is an Einstein metric. In this article, we deal with the 3 dimensional case of the equation. In dimension 3, if the conjecture fails, there should be a stable minimal hypersurface in ($M^3$, g). We study some necessary conditions to guarantee that a stable minimal hypersurface exists in $M^3$.

  • PDF