• 제목/요약/키워드: Einstein condition

검색결과 50건 처리시간 0.026초

COMPARISON OF EINSTEIN MANIFOLDS WITH THORPE MANIFOLDS

  • Kim, Ho-Bub;Kim, Jae-Man
    • 대한수학회보
    • /
    • 제37권1호
    • /
    • pp.85-90
    • /
    • 2000
  • On Riemannian manifolds of dimension 4 the Einstein condition is equivalent to the Thorpe condition. In this paper, we construct a few metrics which we Einstein but not Thorpe, and vice versa in dimensions larger than 4.

  • PDF

ON STABILITY OF EINSTEIN WARPED PRODUCT MANIFOLDS

  • Pyo, Yong-Soo;Kim, Hyun-Woong;Park, Joon-Sik
    • 호남수학학술지
    • /
    • 제32권1호
    • /
    • pp.167-176
    • /
    • 2010
  • Let (B, $\check{g}$) and (N, $\hat{g}$) be Einstein manifolds. Then, we get a complete (necessary and sufficient) condition for the warped product manifold $B\;{\times}_f\;N\;:=\;(B\;{\times}\;N,\;\check{g}\;+\;f{\hat{g}}$) to be Einstein, and obtain a complete condition for the Einstein warped product manifold $B\;{\times}_f\;N$ to be weakly stable. Moreover, we get a complete condition for the map i : ($B,\;\check{g})\;{\times}\;(N,\;\hat{g})\;{\rightarrow}\;B\;{\times}_f\;N$, which is the identity map as a map, to be harmonic. Under the assumption that i is harmonic, we obtain a complete condition for $B\;{\times}_f\;N$ to be Einstein.

A NOTE ON EINSTEIN-LIKE PARA-KENMOTSU MANIFOLDS

  • Prasad, Rajendra;Verma, Sandeep Kumar;Kumar, Sumeet
    • 호남수학학술지
    • /
    • 제41권4호
    • /
    • pp.669-682
    • /
    • 2019
  • The objective of this paper is to introduce and study Einstein-like para-Kenmotsu manifolds. For a para-Kenmotsu manifold to be Einstein-like, a necessary and sufficient condition in terms of its curvature tensor is obtained. We also obtain the scalar curvature of an Einstein-like para-Kenmotsu manifold. A necessary and sufficient condition for an almost para-contact metric hypersurface of a locally product Riemannian manifold to be para-Kenmotsu is derived and it is shown that the para-Kenmotsu hypersurface of a locally product Riemannian manifold of almost constant curvature is always Einstein.

ON NON-PROPER PSEUDO-EINSTEIN RULED REAL HYPERSURFACES IN COMPLEX SPACE FORMS

  • Suh, Young-Jin
    • 대한수학회보
    • /
    • 제36권2호
    • /
    • pp.315-336
    • /
    • 1999
  • In the paper [12] we have introduced the new kind of pseudo-einstein ruled real hypersurfaces in complex space forms $M_n(c), c\neq0$, which are foliated by pseudo-Einstein leaves. The purpose of this paper is to give a geometric condition for non-proper pseudo-Einstein ruled real hypersurfaces to be totally geodesic in the sense of Kimura [8] for c> and Ahn, Lee and the present author [1] for c<0.

  • PDF

SOME GEOMETRIC RESULTS ON A PARTICULAR SOLUTION OF EINSTEIN'S EQUATION

  • Lee, Jong Woo
    • Korean Journal of Mathematics
    • /
    • 제18권1호
    • /
    • pp.21-28
    • /
    • 2010
  • In the unified field theory(UFT), many works on the solutions of Einstein's equation have been published. The main goal in the present paper is to obtain some geometric results on a particular solution of Einstein's equation under some condition in even-dimensional UFT $X_n$.

EINSTEIN'S CONNECTION IN 5-DIMENSIONAL ES-MANIFOLD

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • 제25권1호
    • /
    • pp.127-135
    • /
    • 2017
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 5-dimensional $^*g-ESX_5$ and to display a surveyable tnesorial representation of 5-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the first class.

EINSTEIN'S CONNECTION IN 3-DIMENSIONAL ES-MANIFOLD

  • HWANG, IN HO
    • Korean Journal of Mathematics
    • /
    • 제23권2호
    • /
    • pp.313-321
    • /
    • 2015
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in 3-dimensional $^*g-ESX_3$ and to display a surveyable tnesorial representation of 3-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the first class.

THE EXISTENCE AND UNIQUENESS OF E(*κ)-CONNECTION IN n-*g-UFT

  • Lee, Jong Woo
    • Korean Journal of Mathematics
    • /
    • 제13권1호
    • /
    • pp.1-11
    • /
    • 2005
  • The purpose of the present paper is to introduce a new concept of the E($^*{\kappa}$)-connection ${\Gamma}^{\nu}_{{\lambda}{\mu}}$, which is both Einstein and ($^*{\kappa}$)-connection, and to obtain a necessary and sufficient condition for the existence of the unique E($^*{\kappa}$)-connection in $n-^*g$-UFT. Next, under this condition, we shall obtain a surveyable tensorial representation of the unique E($^*{\kappa}$)-connection in $n-^*g$-UFT.

  • PDF

CRITICAL POINTS AND CONFORMALLY FLAT METRICS

  • Hwang, Seungsu
    • 대한수학회보
    • /
    • 제37권3호
    • /
    • pp.641-648
    • /
    • 2000
  • It has been conjectured that, on a compact 3-dimensional manifold, a critical point of the total scalar curvature functional restricted to the space of constant scalar curvature metrics of volume 1 is Einstein. In this paper we find a sufficient condition that a critical point is Einstein. This condition is equivalent for a critical point ot be conformally flat. Its relationship with the Fisher-Marsden conjecture is also discussed.

  • PDF