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AN EINSTEIN’S CONNECTION WITH ZERO TORSION
VECTOR IN EVEN-DIMENSIONAL UFT Xn

Jong Woo Lee*

Abstract. The main goal in the present paper is to obtain a nec-
essary and sufficient condition for a new connection with zero tor-
sion vector to be an Einstein’s connection and derive some useful
representation of the vector defining the Einstein’s connection in
even-dimensional UFT Xn.

1. Introduction

Einstein([1]) proposed a new unified field theory that would include
both gravitation and electromagnetism. Hlavatý([8]) gave the mathe-
matical foundation of the Einstein’s unified field theory in a 4-dimensional
generalized Riemannian space X4 (i.e., space-time) for the first time.
And the n-dimensional generalization of this theory in a generalized
Riemannian manifold Xn, the so-called Einstein’s n-dimensional unified
field theory(UFT Xn), had been obtained by Mishra([7]). Since then
many consequences of this theory has been obtained by a number of
mathematicians. However, it has been unable yet to represent a general
n-dimensional Einstein’s connection in a surveyable tensorial form, prob-
ably due to the complexity of the higher dimensions. The purpose of the
present paper is to introduce a new connection with zero torsion vector
in UFT Xn. In the next, we obtain a necessary and sufficient condition
for the connection to be an Einstein’s connection and derive some useful
representation of the vector defining the Einstein’s connection in UFT
Xn. The obtained results and discussions in the present paper will be
useful for the even-dimensional considerations of the unified field theory.

Received October 12, 2011; Accepted November 18, 2011.
2010 Mathematics Subject Classification: Primary 53A45, 53B50, 53C25.
Key words and phrases: Einstein’s connection, Einstein’s equation, Einstein’s vec-

tor, torsion tensor, torsion vector, unified field theory, UFT.



870 Jong Woo Lee

2. Preliminary

Let Xn be an n-dimensional generalized Riemannian manifold covered
by a system of real coordinate neighborhoods {U; xν}, where, here and
in the sequel, Greek indices run over the range {1, 2, · · · , n} and follow
the summation convention. The algebraic structure on Xn is imposed
by a basic real non-symmetric tensor gλµ, which may be split into its
symmetric part hλµ and skew-symmetric part kλµ:

(2.1) gλµ = hλµ + kλµ,

where we assume that
(a) G = det(gλµ) 6= 0,

(b) H = det(hλµ) 6= 0,

(c) T = det(kλµ) 6= 0.

(2.2)

Since det(hλµ) 6= 0, we may define a unique tensor hλν(= hνλ) by

(2.3) hλµhλν = δν
µ.

We use the tensors hλν and hλµ as tensors for raising and/or lowering
indices for all tensors defined on Xn in the usual manner. Then we may
define new tensors by

(2.4) (a) kα
µ = kλµhλα, (b) kλ

α = kλµhµα, (c) kαβ = kλµhλαhµβ.

Since kλµ is skew-symmetric, and T 6= 0, the dimension of Xn is even.
That is, n is even. Hence all our further considerations in the present
paper are dealt in even-dimensional UFT Xn. The manifold Xn is as-
sumed to be connected by a general real connection Γν

λµ which may also
be split into its symmetric part Λν

λµ and skew-symmetric part Sλµ
ν ,

called the torsion tensor of Γν
λµ :

(a) Λν
λµ = Γν

(λµ) =
1
2
(Γν

λµ + Γν
µλ),

(b) Sλµ
ν = Γν

[λµ] =
1
2
(Γν

λµ − Γν
µλ).

(2.5)

The Einstein’s n-dimensional unified field theory on Xn(UFT Xn) is
governed by the following set of equations :

(2.6) ∂ωgλµ − gαµΓα
λω − gλαΓα

ωµ = 0 (∂ν =
∂

∂xν
),

and

(2.7) (a) Sλ = Sλα
α = 0, (b) R[λµ] = ∂[λPµ], (c) R(λµ) = 0,
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where Pµ is an arbitrary vector, called the Einstein’s vector, and Rλµ is
the contracted curvature tensor Rα

λµα of the curvature tensor Rω
λµν :

(2.8) Rω
λµν = ∂µΓω

λν − ∂νΓω
λµ + Γα

λνΓ
ω
αµ − Γα

λµΓω
αν .

The equation (2.6) is called the Einstein’s equation, and a solution Γν
λµ

of the Einstein’s equation is called the Einstein’s connection. And the
vector Sλ, defined by (2.7)(a), is the called the torsion vector.

In UFT Xn, the following quantities are frequently used, where p =
1, 2, 3, ... :

(a) g =
G

H
, k =

T

H
,

(b) K0 = 1, Kp = k[α1

α1 kα2
α2 ... kαp]

αp ,

(c) (0)kλ
ν = δν

λ, (p)kλ
ν = kλ

α (p−1)kα
ν

= (p−1)kλ
α

kα
ν ,

(d) φ = (2)kα
α.

(2.9)

It should be remarked that the tensor (p)kλν is symmetric if p is even,
and skew-symmetric if p is odd. It has been shown by Chung([5]) that
the following relations hold in UFT Xn.

(a) Kn = k, Kp = 0 (p is odd),

(b) g =
n∑

s=0

Ks,

(c)
n∑

s=0

Ks
(n−s)kλ

ν
= 0.

(2.10)

Here and in what follows, the index s is assumed to take the values 0,
2, 4, ... , n in the specified range. The following quantities are also used
in our further considerations.

(2.11) Ω0 = 0, Ωs = φΩs−2 + Ks−2,

where φ is given in (2.9)(d). A direct calculation shows that

Ωn+2 =φ
n
2 K0 + φ

n−2
2 K2 + φ

n−4
2 K4 +

... + φKn−2 + Kn

=
n∑

s=0

{
√

φ}n−sKs

(2.12)
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Furthermore the characteristic polynomial corresponding to kλµ, that is,
the basic polynomial(Chung([6])) may be given by

det(Mhλµ + kλµ) =H(Mn + Mn−2K2 + ... + M2Kn−2 + k)

=H
n∑

s=0

Mn−sKs,
(2.13)

for an arbitrary scalar M .

Remark 2.1. In virtue of (2.2)(c), since T 6= 0, there exists a unique
skew-symmetric tensor k

λµ in UFT Xn satisfying

(2.14) kλµ k
λν = δν

µ.

It has been shown by Lee([3]) that in UFT Xn, the representation of the
tensor k

λµ may be given by

(2.15) k
λµ =

1
k

n−2∑

s=0

Ks
(n−s−1)kλµ.

As useful results of the relations (2.10)(b) and (2.15) for the lower-
dimensional cases n = 2, 4, we obtain the following Table 1, in virtue of
(2.9)(b) and (d),

Table 1. For n = 2, 4, the representations of g and k
λµ.

n g k
λµ

2 g = 1 + k k
λµ =

1
k
kλµ

4 g = 1− 1
2
φ + k k

λµ = 1
k ((3)kλµ + (g − k − 1)kλµ)

3. An Einstein’s connection with zero torsion vector in UFT
Xn

The following theorem was proved by Hlavatý([8]).
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Theorem 3.1. If the Einstein’s equation (2.6) admits a solution Γν
λµ

in UFT Xn, then this solution must be of the form

(3.1) Γν
λµ = {λ

ν
µ}+ 2hναSα(λ

βkµ)β + Sλµ
ν ,

where {λ
ν
µ} are the Christoffel symbols defined by hλµ.

Remark 3.2. In virtue of Theorem 3.1, the equation (3.1) reduces
the investigation Γν

λµ to the study of its torsion tensor Sλµ
ν . Hence in

order to know an Einstein’s connection Γν
λµ, it is necessary and sufficient

to know its torsion tensor Sλµ
ν . For this, we introduces a torsion tensor

Sλµ
ν(Lee([2])) given by

(3.2) Sλµ
ν = 2δν

[λXµ] + kλµY ν ,

for some nonzero vectors Xλ and Yλ. This torsion tensor (3.2) satisfies
the condition (2.7)(a), that is, its torsion vector is zero if and only if the
vectors Xλ and Yλ defining (3.2) are related by

(3.3) Xλ =
1

n− 1
kλαY α.

Substituting (3.3) into (3.2), we obtain a new torsion tensor Sλµ
ν given

by, for some nonzero vector Yλ,

(3.4) Sλµ
ν =

2
n− 1

δν
[λkµ]αY α + kλµY ν ,

which is a torsion tensor with zero torsion vector.

Theorem 3.3. In UFT Xn, if the connection (3.1) is a connection
such that its torsion tensor is of the form (3.4) for some nonzero vector
Yλ, then the connection is given by

(3.5) Γν
λµ = {λ

ν
µ}+

2(2− n)
n− 1

k(λ
ν kµ)αY α +

2
n− 1

δν
[λkµ]αY α + kλµY ν .

Proof. Since the torsion tensor of the connection (3.1) is of the form
(3.4), we obtain

(3.6) 2hναSα(λ
βkµ)β =

2(2− n)
n− 1

k(λ
ν kµ)αY α

by a straightforward computation. Substituting (3.4) and (3.6) into
(3.1), we obtain (3.5).
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Theorem 3.4. In UFT Xn, the connection (3.5) is a Einstein’s con-
nection if and only if the vector Yλ defining (3.5) satisfies the following
condition

(3.7) ∇ν kλµ =
2

n− 1
hν[λkµ]αY α − 2kν[λ Yµ] +

2(n− 2)
n− 1

(2)kν[λ kµ]αY α,

where ∇ω is the symbolic vector of the covariant derivative with respect
to {λ

ν
µ}.

Proof. The connection (3.5) is an Einstein’s connection if and only if
the connection (3.5) satisfies the Einstein’s equation (2.6). Substituting
(2.1) and (3.5) into (2.6), and making use of ∇ν hλµ = 0, we obtain

(3.8) ∇ν kλµ− 2
n− 1

hν[λkµ]αY α+2kν[λ Yµ]−
2(n− 2)
n− 1

(2)kν[λ kµ]αY α = 0

by a straightforward computation. Hence the connection (3.5) is an
Einstein’s connection if and only if the vector Yλ defining (3.5) satisfies
the condition (3.7).

Remark 3.5. In virtue of Remark 3.2, Theorem 3.3, and Theorem
3.4, if a vector Yλ defining (3.5) satisfies the condition (3.7), then the
connection (3.5) defined the vector Yλ is an Einstein’s connection with
zero torsion vector. Since this Einstein’s connection satisfies one of the
field equations, that is, (2.7)(a), it will play an important role in the
study of UFT Xn.

4. The representation of the vector Y ν defining (3.5) and
satisfying (3.7)

In virtue of Theorem 3.3 and Theorem 3.4, in order to know the
Einstein’s connection (3.5) it is necessary and sufficient to know the
vector Yλ defining (3.5) and satisfying (3.7), which is the main goal of
this section.

Remark 4.1. Multiplying hµα on both sides of (3.7) and contracting
for ν and α, we obtain

(4.1) ∇βkλ
β = −n− 2

n− 1
{φkλβ − (3)kλβ}Y β = −n− 2

n− 1
PλβY β,

where φ is given by (2.9)(d), and

(4.2) Pλµ = φkλµ − (3)kλµ,

Our investigation is based on the skew-symmetric tensor (4.2).
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Lemma 4.2. In UFT Xn, if φ = 1, then the determinant of the tensor
Pλµ, given by (4.2), never vanishes, i.e.,

(4.3) det(kλµ − (3)kλµ) 6= 0.

Proof. When φ = 1, the tensor Pλµ can be rewritten as

Pλµ =kλµ − (3)kλµ

=(hαλ + kαλ)kαβ(hβµ + kβµ) = gαλkαβgβµ.
(4.4)

For any n-square matrices A = (aλµ), B = (bλµ) and C = (cλµ), the
determinant of their matrix product tBAC = (dλµ), where tB is the
transpose of B, is given by

(4.5) det(tBAC) = det(bαλaαβcβµ) = detB detA detC,

in virtue of det tB = detB. Hence in virtue of (2.2)(b) and (c), (2.3),
(2.4)(c), and (4.5), we obtain

(4.6) det(kλµ) = det(hαλkαβhβµ) = T (
1
H

)2,

since detA−1 = 1/detA. Hence in virtue of (2.2)(a), (2.9)(a), and (4.6),
(4.4) implies

(4.7) det(Pλµ) = G{T (
1
H

)2}G = T (
G

H
)2 = g2T 6= 0.

Lemma 4.3. In UFT Xn, if φ = 1, then Ωn+2, given by (2.12), never
vanishes, i.e.,

(4.8) Ωn+2 6= 0.

Proof. Since φ = 1, in virtue of (2.2)(a), (2.9)(a), (2.10)(b), and
(2.12), we obtain

(4.9) Ωn+2 =
n∑

s=0

Ks = g 6= 0.

Lemma 4.4. In UFT Xn, det(Pλµ) 6= 0 if and only if Ωn+2 6= 0.

Proof. Applying the same method used to prove Lemma 4.2, we ob-
tain

(4.10) det(Pλµ) =
T

H2
{det(

√
φhλµ + kλµ)}2.
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On the other hand, in virtue of (2.12) and (2.13), we obtain

(4.11) det(
√

φhλµ + kλµ) = H
n∑

p=0

{
√

φ}n−pKp = HΩn+2.

Therefore, in virtue of (4.10) and (4.11), we obtain

(4.12) det(Pλµ) =
T

H2
(HΩn+2)2 = T (Ωn+2)2,

which implies that det(Pλµ) 6= 0 if and only if Ωn+2 6= 0.

Remark 4.5. In our further considerations in the present paper, we
assume that

(4.13) det(Pλµ) = det(φkλµ − (3)kλµ) 6= 0,

and hence, in virtue of Lemma 4.4,

(4.14) Ωn+2 6= 0.

In virtue of (4.13), there exists a unique skew-symmetric tensor Qλν

satisfying

(4.15) Pλµ Qλν = δν
µ.

Remark 4.6. According to Lemma 4.3, the assumption (4.14) is au-
tomatically satisfied for the case φ = 1. On the other hand, for the
lower-dimensional cases n = 2, 4, we obtain the following Table 2, in
virtue of (2.9)(b) and (d), (2.10)(a), (2.11), and Table 1, According to
this Table 2, the assumption (4.14) is also automatically satisfied for the
case n = 2.

Table 2. For n = 2, 4, the representations of Ωn+2.

n Ω4 Ω6

2 Ω4 = −k 6= 0

4 Ω4 = 1 + k − g Ω6 = 2(1 + k − g)2 + k

In our further considerations in the present paper, we use the follow-
ing useful abbreviations for any tensor Zλν , for p, q = 1, 2, 3, ...

(4.16) (p)Zλµ = (p−1)kλ
ν Zνµ.
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We then have

(4.17) (1)Zλµ = Zλµ, (p)kλ
ν (q)Zνµ = (p+q)Zλµ.

Lemma 4.7. The following recurrence relations in UFT Xn holds:

(4.18) (p)Qων = φ (p−2)Qων + (p−4)kων (p = 3, 4, 5, ...),

where

(4.19) (−1)kλµ = −k
λµ

,

where the tensor k
λµ

is given by (2.15).

Proof. Substituting (4.2) into (4.15), we obtain, in virtue of (4.16),

(4.20) (4)Qµν = φ (2)Qµν + hµν .

Multiplying (p−4)kω
µ to both sides of (4.20), we obtain the relation (4.18)

in virtue of (4.19).

Theorem 4.8. The representation of the tensor Qλµ , given by (4.15),
in UFT Xn may be given by

(4.21) Qλµ = − 1
Ωn+2

n−2∑

s=0

Ωs+2
(n−s−3)kλµ.

Proof. Multiplying Qνµ to both sides of (2.10)(c), and using (4.16),
we obtain

n∑

s=0

Ks
(n−s+1)Qλµ

=K0
(n+1)Qλµ + K2

(n−1)Qλµ +
n∑

s=4

Ks
(n−s+1)Qλν = 0.

(4.22)

Substituting (n+1)Qλµ from (4.18) into the first term of (4.22), and using
(2.9)(b) and (2.11), we obtain

(n−3)kλµ + {φ + K2} (n−1)Qλµ +
n∑

s=4

Ks
(n−s+1)Qλν

=(n−3)kλµ + Ω4
(n−1)Qλµ + K4

(n−3)Qλµ +
n∑

s=6

Ks
(n−s+1)Qλν

= 0.

(4.23)



878 Jong Woo Lee

Substituting again (n−1)Qλµ from (4.18) into (4.23), and using (2.11),
we obtain

(n−3)kλµ + Ω4
(n−5)kλµ + {φΩ4 + K4} (n−3)Qλµ

+
n∑

s=6

Ks
(n−s+1)Qλµ

=(n−3)kλµ + Ω4
(n−5)kλµ + Ω6

(n−3)Qλµ + K6
(n−5)Qλµ

+
n∑

s=8

Ks
(n−s+1)Qλµ

=0.

(4.24)

After (n − 2)/2 steps of successive repeat substituting for (p)Qλµ from
(4.18), we obtain

(4.25)
n−4∑

s=0

Ωs+2
(n−s−3)kλµ + Ωn

(3)Qλµ + Kn Qλµ = 0,

in virtue of (2.12). On the other hand, if p = 3 in (4.18), then we obtain

(4.26) (3)Qων = φQων + (−1)kων = φQων − k
ων

Substituting (4.26) into (4.25), and using (2.11) and (4.19), we obtain
n−4∑

s=0

Ωs+2
(n−s−3)kλµ − Ωn k

λµ + {φΩn + Kn}Qλµ

=
n−2∑

s=0

Ωs+2
(n−s−3)kλµ + Ωn+2 Qλµ = 0,

(4.27)

which is condensed to (4.21).

Theorem 4.9. If the vector Yλ defining (3.5) satisfies the condition
(3.7) in UFT Xn, then

(4.28) Y α = −n− 1
n− 2

Qλα∇βkλ
β, (n 6= 2),

where Qλµ is given by (4.21).

Proof. In virtue of Remark 4.1, since the vector Yλ defining (3.5)
satisfies the condition (3.7), we obtain

(4.29) ∇βkλ
β = −n− 2

n− 1
PλβY β.
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Multiplying Qλα on both sides of (4.29) and making use of (4.15), we
obtain (4.28).

Remark 4.10. When n = 2, that is, in UFT X2, the connection (3.5)
is given by

(4.30) Γν
λµ = {λ

ν
µ}+ 2δν

[λkµ]αY α + kλµY ν ,

and the condition (3.7) is given by

(4.31) ∇ν kλµ = 2hν[λkµ]αY α − 2kν[λ Yµ].

In particular, in virtue of (4.1),

(4.32) ∇βkλ
β = 0.

But since n = 2, in (4.30)

(4.33) Sλµ
ν = 0,

and in (4.31)

(4.34) ∇ν kλµ = 0.

We can easily check the above results (4.33) and (4.34) in UFT X2 : for
instance,

(4.35) S12
1 = δ1

1k2αY α − δ1
2k1αY α + k12Y

1 = 0,

and
∇1 k12 =2h1[1k2]αY α − 2k1[1 Y2]

=(h11Y
1 + h12Y

2)k21 + k12Y1

=h1αY αk21 + k12Y1 = 0.

(4.36)

Therefore (4.30) reduces to

(4.37) Γν
λµ = {λ

ν
µ}

Hence the Einstein’s equation (2.6) reduces

(4.38) ∂ωgλµ − gαµ{λ
α

ω} − gλα{ω
α

µ} = 0,

or equivalently, making use of ∇ν hλµ = 0,

(4.39) ∇ω gλµ = ∇ω kλµ = 0.

On the other hand,

(4.40) Rλµ = Hλµ,
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where Hλµ is the contracted curvature tensor Hα
λµα of the curvature

tensor Hω
λµν defined by {λ

ν
µ}, so that the Einstein’s vector (2.7)(b) is

automatically satisfied by Pλ = ∂λP , and (2.7)(c) reduce to

(4.41) Hλµ = 0.

Since, in virtue of (4.32) and (4.34)

(4.42) ∂[ωkλµ] = 0, ∇αkαν = 0,

the tensor kλµ may be identified with the tensor of the electromagnetic
field in UFT X2.

Remark 4.11. In virtue of Theorem 3.3, Theorem 3.4, and Theorem
4.9, when n 6= 2, the connection (3.5) defined by the vector (4.28) is an
Einstein’s connection with zero torsion vector if and only if the vector
(4.28) satisfies the condition (3.7). Hence the vector (4.28) will play an
important role in the study of UFT Xn. For the lower-dimensional cases
n = 2, 4, we obtain the following Table 3, in virtue of Table 1 and 2,
Theorem 4.8, Theorem 4.9, and Remark 4.10.

Table 3. For n = 2, 4, the representations of Qλµ and Yλ.

n Qλµ Yλ

2 Qλµ = − 1
k2

kλµ nonzero vector

4 Qλµ =
Ω4

(3)kλµ − (Ω4 + k)kλµ

k{2(Ω4)2 + k} Y α = −3
2
Qλα∇βkλ

β

(Ω4 = 1 + k − g)
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