THE EXISTENCE AND UNIQUENESS OF $\mathbf{E}(* k)$-CONNECTION IN $n-* g$-UFT

Jong Woo Lee

Abstract

The purpose of the present paper is to introduce a new concept of the $\mathrm{E}\left({ }^{*} k\right)$-connection $\Gamma_{\lambda \mu}^{\nu}$, which is both Einstein and $\left({ }^{*} \mathrm{k}\right)$-connection, and to obtain a necessary and sufficient condition for the existence of the unique $\mathrm{E}(* \mathrm{k})$-connection in $n-{ }^{*} g$-UFT. Next, under this condition, we shall obtain a surveyable tensorial representation of the unique $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection in $n-{ }^{*} g$-UFT.

1. Introduction

Einstein[1] proposed a new unified field theory that would include both gravitation and electromagnetism. Characterizing Einstein's unified field theory as a set of geometrical postulates in the space-time X_{4}, Hlavatý $[10]$ gave its mathematical foundation for the first time, and generalized X_{4} to the n-dimensional generalized Riemannian manifold X_{n}, n-dimensional generalization of this theory, the so-called Einstein's n-dimensional unified field theory $(n-g$ - $U F T)$. Since then many consequences of this theory has been obtained. In particular, the representations of the Einstein connection satisfying Einstein's equations in n - g-UFT, imposing some conditions to X_{n}, were obtained by Chung[6] and Lee $[2,3]$. Corresponding to n - g-UFT, Chung[7, 8] introduced a new unified field theory, called Einstein's n-dimensional ${ }^{*} g$-unified field theory ($n-* g-U F T$). This theory is more useful than $n-g$-UFT in some physical aspects. Chung[7~9] obtained many consequences of this theory. In $n-* g$-UFT, however, it has been unable yet to represent a general n-dimensional Einstein's connection in a surveyable tensorial

[^0]form. In $n-{ }^{*} g$-UFT, a connection $\Gamma_{\lambda \mu}^{\nu}$ which is both Einstein and $\left({ }^{*} \mathrm{k}\right)$ connection is called an $\mathrm{E}(* \mathrm{k})$-connection. The purpose of the present paper is to obtain a necessary and sufficient condition for the existence of the unique $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection in $n-{ }^{*} g$-UFT. Next, under this condition, we shall obtain a precise tensorial representation of the unique $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection. The obtained results and discussions in the present paper will be useful for the n-dimensional considerations of the unified field theory.

2. Preliminaries

Let X_{n} be an n-dimensional generalized Riemannian manifold covered by a system of real coordinate neighborhoods $\left\{\mathrm{U} ; x^{\nu}\right\}$, where, here and in the sequel, Greek indices run over the range $\{1,2, \cdots, n\}$ and follow the summation convention. In the Einstein's usual n-dimensional unified field theory (n - g-UFT), the algebraic structure on X_{n} is imposed by a basic real non-symmetric tensor $g_{\lambda \mu}$, which may be split into its symmetric part $h_{\lambda \mu}$ and skew-symmetric part $k_{\lambda \mu}$:

$$
\begin{equation*}
g_{\lambda \mu}=h_{\lambda \mu}+k_{\lambda \mu}, \tag{2.1}
\end{equation*}
$$

where we assume that

$$
\begin{equation*}
\operatorname{det}\left(g_{\lambda \mu}\right) \neq 0, \quad \operatorname{det}\left(h_{\lambda \mu}\right) \neq 0, \quad \operatorname{det}\left(k_{\lambda \mu}\right) \neq 0 . \tag{2.2}
\end{equation*}
$$

Since $\operatorname{det}\left(h_{\lambda \mu}\right) \neq 0$, we may define a unique tensor $h^{\lambda \nu}\left(=h^{\nu \lambda}\right)$ by

$$
\begin{equation*}
h_{\lambda \mu} h^{\lambda \nu}=\delta_{\mu}^{\nu} . \tag{2.3}
\end{equation*}
$$

We use the tensors $h^{\lambda \nu}$ and $h_{\lambda \mu}$ as tensors for raising and/or lowering indices for all tensors defined in n-g-UFT in the usual manner. Then we may define new tensors by

$$
\begin{equation*}
g^{\lambda \mu}=g_{\alpha \beta} h^{\lambda \alpha} h^{\mu \beta}, \quad k^{\lambda \mu}=k_{\alpha \beta} h^{\lambda \alpha} h^{\mu \beta}, \quad k_{\lambda}^{\nu}=k_{\lambda \mu} h^{\mu \nu}, \tag{2.4}
\end{equation*}
$$

so that in virtue of (2.1) and (2.3), we obtain

$$
\begin{equation*}
g^{\lambda \mu}=h^{\lambda \mu}+k^{\lambda \mu} . \tag{2.5}
\end{equation*}
$$

It should be remarked that since $k_{\lambda \mu}$ is a skew-symmetric tensor and $\operatorname{det}\left(k_{\lambda \mu}\right) \neq 0, n$ is even. In n - g-UFT the differential geometric structure on X_{n} is imposed by the tensor $g_{\lambda \mu}$ by means of a connection $\Gamma_{\lambda \mu}^{\nu}$ defined by the Einstein's equations:

$$
\begin{equation*}
\partial_{\omega} g_{\lambda \mu}-g_{\alpha \mu} \Gamma_{\lambda \omega}^{\alpha}-g_{\lambda \alpha} \Gamma_{\omega \mu}^{\alpha}=0 \quad\left(\partial_{\nu}=\frac{\partial}{\partial x^{\nu}}\right) \tag{2.6a}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
D_{\omega} g_{\lambda \mu}=2 S_{\omega \mu}{ }^{\alpha} g_{\lambda \alpha}, \tag{2.6b}
\end{equation*}
$$

where D_{ω} denotes the symbolic vector of the covariant derivative with respect to $\Gamma_{\lambda \mu}^{\nu}$, and $S_{\lambda \mu}{ }^{\nu}$ is the torsion tensor of $\Gamma_{\lambda \mu}^{\nu}$.

But in our Einstein's n-dimensional ${ }^{*} g$-unified field theory $(n-* ~ g$ UFT), the role of the basic tensor is no longer played by $g_{\lambda \mu}$. In $n-* g$-UFT the algebraic structure on the same space X_{n} is imposed by the basic real non-symmetric tensor ${ }^{*} g^{\lambda \nu}$ defined by

$$
\begin{equation*}
g_{\lambda \mu}{ }^{*} g^{\lambda \nu}=g_{\mu \lambda^{*}} g^{\nu \lambda}=\delta_{\mu}^{\nu} . \tag{2.7}
\end{equation*}
$$

It may be also decomposed into its symmetric part * $h^{\lambda \nu}$ and skewsymmetric part * $k^{\lambda \nu}$:

$$
\begin{equation*}
{ }^{*} g^{\lambda \nu}={ }^{*} h^{\lambda \nu}+{ }^{*} k^{\lambda \nu}, \tag{2.8}
\end{equation*}
$$

where we assume that $\operatorname{det}\left({ }^{*} h^{\lambda \nu}\right) \neq 0$. Therefore we may also define a unique tensor ${ }^{*} h_{\lambda \mu}\left(={ }^{*} h_{\mu \lambda}\right)$ by

$$
\begin{equation*}
{ }^{*} h_{\lambda \mu}{ }^{*} h^{\lambda \nu}=\delta_{\mu}^{\nu} . \tag{2.9}
\end{equation*}
$$

We use both ${ }^{*} h^{\lambda \nu}$ and ${ }^{*} h_{\lambda \mu}$ as tensors for raising and/or lowering indices for all tensors defined in $n-* g-U F T$ in the usual manner. Then we may also define new tensors by

$$
\begin{align*}
& { }^{*} g_{\lambda \mu}={ }^{*} g^{\alpha \beta *} h_{\lambda \alpha}{ }^{*} h_{\mu \beta}, \tag{2.10}\\
& { }^{*} k_{\lambda \mu}={ }^{*} k^{\alpha \beta *} h_{\lambda \alpha}{ }^{*} h_{\mu \beta}, \quad{ }^{*} k_{\lambda}{ }^{\nu}={ }^{*} k^{\alpha \nu *} h_{\alpha \lambda},
\end{align*}
$$

so that in virtue of (2.8) and (2.9) we obtain

$$
\begin{equation*}
{ }^{*} g_{\lambda \mu}={ }^{*} h_{\lambda \mu}+{ }^{*} k_{\lambda \mu} . \tag{2.11}
\end{equation*}
$$

On the other hand, in $n-^{*} g$-UFT the differential geometrical structure on X_{n} is imposed by the tensor ${ }^{*} g^{\lambda \nu}$ by means of a connection $\Gamma_{\lambda \mu}^{\nu}$ defined by a system of ${ }^{*} g$-Einstein's equations:

$$
\begin{equation*}
\partial_{\omega}{ }^{*} g^{\lambda \nu}+{ }^{*} g^{\alpha \nu} \Gamma_{\alpha \omega}^{\lambda}+{ }^{*} g^{\lambda \alpha} \Gamma_{\omega \alpha}^{\nu}=0, \tag{2.12a}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
D_{\omega}{ }^{*} g^{\lambda \nu}=-2 S_{\omega \alpha}{ }^{\nu *} g^{\lambda \alpha} . \tag{2.12b}
\end{equation*}
$$

Hlavatý[10] proved that the system of * g-Einstein's equations (2.12) is equivalent to the system of original Einstein's equations (2.6).

The following quantities are frequently used in our further considerations: For every integer $p \geq 1$,

$$
\begin{equation*}
{ }^{(0) *} k_{\lambda}{ }^{\nu}=\delta_{\lambda}^{\nu}, \quad(p) * k_{\lambda}{ }^{\nu}={ }^{*} k_{\lambda}{ }^{\alpha}(p-1) * k_{\alpha}{ }^{\nu}={ }^{(p-1) *} k_{\lambda}{ }^{\alpha} * k_{\alpha}{ }^{\nu} . \tag{2.13}
\end{equation*}
$$

It should be remarked that the tensor ${ }^{(p) *} k_{\lambda \nu}$ is symmetric if p is even, and skew-symmetric if p is odd.

3. Existence of $\mathbf{E}\left({ }^{*} k\right)$-connection

Agreement 3.1. All our further considerations in the present paper are dealt in $n^{-}{ }^{*} g$-UFT, where n is even.

Definition 3.2. A connection $\Gamma_{\lambda \mu}^{\nu}$ is said to be Einstein if it satisfies the system of ${ }^{*} g$-Einstein's equations (2.12). A connection $\Gamma_{\lambda \mu}^{\nu}$ is said to be (${ }^{*} k$)-connection if its torsion tensor $S_{\lambda \mu}{ }^{\nu}$ is of the form

$$
\begin{equation*}
S_{\lambda \mu}{ }^{\nu}={ }^{*} k_{\lambda \mu} Y^{\nu} \tag{3.1}
\end{equation*}
$$

for some nonzero vector Y^{ν}. A connection which is both Einstein and $\left({ }^{*} \mathrm{k}\right)$-connection is called an $E\left({ }^{*} k\right)$-connection.

Theorem 3.3. when for some nonzero vector Y^{ν} the condition (3.1) holds, the system of equations (2.12) is equivalent to the following system of equations:

$$
\begin{align*}
& D_{\omega}{ }^{*} h^{\lambda \nu}=-2^{*} k_{\omega}{ }^{(\lambda} Y^{\nu)}+2^{(2) *} k_{\omega}{ }^{(\lambda} Y^{\nu)}, \tag{3.2a}\\
& D_{\omega}{ }^{*} k^{\lambda \nu}=-2^{*} k_{\omega}{ }^{[\lambda} Y^{\nu]}+2^{(2) *} k_{\omega}{ }^{[\lambda} Y^{\nu]} . \tag{3.2b}
\end{align*}
$$

Proof. Substituting (2.8) and (3.1) into (2.12b), we obtain

$$
\begin{equation*}
D_{\omega}{ }^{*} g^{\lambda \nu}=-2^{*} k_{\omega}{ }^{\lambda} Y^{\nu}+2^{(2) *} k_{\omega}{ }^{\lambda} Y^{\nu} . \tag{3.3}
\end{equation*}
$$

The equations (3.2a) and (3.2b) follow from (3.3) and from

$$
D_{\omega}{ }^{*} h^{\lambda \nu}=D_{\omega}{ }^{*} g^{(\lambda \nu)}, \quad D_{\omega}{ }^{*} k^{\lambda \nu}=D_{\omega}{ }^{*} g^{[\lambda \nu]} .
$$

Conversely, taking the sum of (3.2a) and (3.2b), we obtain (3.3).
Theorem 3.4. The equation (3.2a) is equivalent to the following equation:

$$
\begin{equation*}
D_{\omega}{ }^{*} h_{\lambda \mu}=2^{*} k_{\omega(\lambda} Y_{\mu)}-2^{(2) *} k_{\omega(\lambda} Y_{\mu)} . \tag{3.4}
\end{equation*}
$$

Proof. Differentiating (2.9) covariantly with respect to $\Gamma_{\lambda \mu}^{\nu}$, we obtain

$$
\begin{align*}
D_{\omega}{ }^{*} h_{\lambda \mu} & =-{ }^{*} h_{\alpha \mu}{ }^{*} h_{\beta \lambda}\left(D_{\omega}{ }^{*} h^{\alpha \beta}\right), \tag{3.5a}\\
D_{\omega}{ }^{*} h^{\lambda \nu} & =-{ }^{*} h^{\alpha \nu}{ }^{*} h^{\beta \lambda}\left(D_{\omega}{ }^{*} h_{\alpha \beta}\right) . \tag{3.5b}
\end{align*}
$$

Substituting (3.2a) into (3.5a), and using (2.10), we obtain (3.4). Conversely, substituting (3.4) into (3.5b), and using (2.10), we obtain (3.2a).

Theorem 3.5. when for some nonzero vector Y^{ν} the condition (3.1) holds, the system of equations (2.12) is equivalent to the followings:

$$
\begin{gather*}
\Gamma_{\lambda \mu}^{\nu}={ }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}+{ }^{(2) *} k_{\lambda \mu} Y^{\nu}+{ }^{*} k_{\lambda \mu} Y^{\nu}, \tag{3.6}\\
\nabla_{\omega}{ }^{*} k^{\lambda \nu}=-2\left({ }^{*} k_{\omega}{ }^{[\lambda}-{ }^{(3) *} k_{\omega}{ }^{[\lambda}\right) Y^{\nu]}, \tag{3.7}
\end{gather*}
$$

where ∇_{ω} is the symbolic vector of the covariant derivative with respect to the Christoffel symbols ${ }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}$ defined by ${ }^{*} h_{\lambda \mu}$.

Proof. From Theorem 3.3 and Theorem 3.4, when for some nonzero vector Y^{ν} the condition (3.1) holds, the system of equations (2.12) is equivalent to the system of equations (3.2b) and (3.4). In virtue of relation

$$
\begin{equation*}
D_{\omega}{ }^{*} h_{\lambda \mu}=\partial_{\omega}{ }^{*} h_{\lambda \mu}-{ }^{*} h_{\alpha \mu} \Gamma_{\lambda \omega}^{\alpha}-{ }^{*} h_{\lambda \alpha} \Gamma_{\mu \omega}^{\alpha}, \tag{3.8}
\end{equation*}
$$

and (3.1), we obtain

$$
\begin{align*}
& \frac{1}{2}{ }^{*} h^{\nu \alpha}\left(D_{\lambda}{ }^{*} h_{\alpha \mu}+D_{\mu}{ }^{*} h_{\alpha \lambda}-D_{\alpha}{ }^{*} h_{\lambda \mu}\right) \tag{3.9a}\\
= & { }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}-2 S^{\nu}{ }_{(\lambda \mu)}+S_{\lambda \mu}{ }^{\nu}-\Gamma_{\lambda \mu}^{\nu} \\
= & { }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}+2^{*} k_{(\lambda}{ }^{\nu} Y_{\mu)}+{ }^{*} k_{\lambda \mu} Y^{\nu}-\Gamma_{\lambda \mu}^{\nu} .
\end{align*}
$$

On the other hand, it follows from (3.4) that

$$
\begin{align*}
& \frac{1}{2}{ }^{*} h^{\nu \alpha}\left(D_{\lambda}{ }^{*} h_{\alpha \mu}+D_{\mu}{ }^{*} h_{\alpha \lambda}-D_{\alpha}{ }^{*} h_{\lambda \mu}\right) \tag{3.9b}\\
= & 2^{*} k_{(\lambda}{ }^{\nu} Y_{\mu)}-{ }^{(2) *} k_{\lambda \mu} Y^{\nu} .
\end{align*}
$$

Comparing (3.9a) with (3.9b), we obtain (3.6). On the other hand, substituting (3.6) into

$$
D_{\omega}{ }^{*} k^{\lambda \nu}=\partial_{\omega}{ }^{*} k^{\lambda \nu}+{ }^{*} k^{\alpha \nu} \Gamma_{\alpha \omega}^{\lambda}+{ }^{*} k^{\lambda \alpha} \Gamma_{\alpha \omega}^{\nu},
$$

we obtain

$$
\begin{equation*}
D_{\omega}{ }^{*} k^{\lambda \nu}=\nabla_{\omega}{ }^{*} k^{\lambda \nu}-2^{(3) *} k_{\omega}{ }^{[\lambda} Y^{\nu]}+2^{(2) *} k_{\omega}{ }^{[\lambda} Y^{\nu]} . \tag{3.10}
\end{equation*}
$$

Comparing (3.2b) with (3.10), we obtain (3.7). Conversely, suppose that (3.6) and (3.7) hold. Substituting (3.6) into (3.8), we obtain (3.4). Similarly, substituting (3.7) into (3.10), we obtain (3.2b).

4. Uniqueness of $\mathbf{E}(* k)$-connection

Remark 4.1. In virtue of Theorem 3.5, it is obvious that if the system of equations (2.12) admits an $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection $\Gamma_{\lambda \mu}^{\nu}$, it must be of the form (3.6). This reduces the investigation of an $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection $\Gamma_{\lambda \mu}^{\nu}$ to the study of the vector Y^{ν} defining (3.6). In order to know the $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection $\Gamma_{\lambda \mu}^{\nu}$ it is necessary and sufficient to know the vector Y^{ν} satisfying the equation (3.7), which is the main goal of this section. Our investigation is based on the skew-symmetric tensor

$$
\begin{equation*}
{ }^{*} P^{\lambda \nu}={ }^{*} k^{\lambda \nu}-{ }^{(3) *} k^{\lambda \nu} . \tag{4.1}
\end{equation*}
$$

Lemma 4.2. For every integer $p \geq 1$, the tensor ${ }^{(p) *} k^{\lambda \nu}$ satisfies the following relations:

$$
\begin{equation*}
{ }^{(p) *} k^{\lambda \nu} g_{\lambda \mu}=\sum_{f=1}^{p}(-1)^{f-1}(p-f) * k_{\mu}^{\nu}+(-1)^{p *} h^{\lambda \nu} g_{\lambda \mu}, \tag{4.2a}
\end{equation*}
$$

$$
\begin{equation*}
(p) * k^{\lambda \nu} g_{\mu \lambda}=-\sum_{f=1}^{p}(p-f) * k_{\mu}^{\nu}+{ }^{*} h^{\lambda \nu} g_{\mu \lambda} . \tag{4.2b}
\end{equation*}
$$

Proof. This assertion (4.2a) will be proved by induction on p. Substituting (2.8) into (2.7), we obtain

$$
\begin{equation*}
{ }^{*} k^{\lambda \nu} g_{\lambda \mu}=\delta_{\mu}^{\nu}-{ }^{*} h^{\lambda \nu} g_{\lambda \mu} . \tag{4.3}
\end{equation*}
$$

Hence in virtue of (2.13), the assertion (4.2a) holds for the case $p=1$. Now, assume that (4.2a) is true for the case $p=m$, i.e.,

$$
\begin{equation*}
(m) * k^{\lambda \nu} g_{\lambda \mu}=\sum_{f=1}^{m}(-1)^{f-1}(m-f) * k_{\mu}^{\nu}+(-1)^{m} * h^{\lambda \nu} g_{\lambda \mu} . \tag{4.4}
\end{equation*}
$$

Multiplying ${ }^{*} k_{\nu}{ }^{\omega}$ to both sides of (4.4), and using (2.13) and (4.3), we obtain

$$
\begin{aligned}
&(m+1) * k^{\lambda \omega} g_{\lambda \mu}=\sum_{f=1}^{m}(-1)^{f-1}(m-f+1) * \\
& k_{\mu}{ }^{\omega}+(-1)^{m} * k^{\lambda \omega} g_{\lambda \mu} \\
&=\sum_{f=1}^{m}(-1)^{f-1}(m-f+1) * \\
& k_{\mu}{ }^{\omega}+(-1)^{m} \delta_{\mu}^{\omega}+(-1)^{m+1 *} h^{\lambda \omega} g_{\lambda \mu} \\
&=\sum_{f=1}^{m+1}(-1)^{f-1}(m+1-f) * k_{\mu}{ }^{\omega}+(-1)^{m+1 *} h^{\lambda \omega} g_{\lambda \mu}
\end{aligned}
$$

which shows that (4.2a) holds for the case $p=m+1$. By the principle of induction, the assertion (4.2a) is true for every integer $p \geq 1$. Similarly, we obtain (4.2b).

Lemma 4.3. The following relation holds

$$
\begin{equation*}
h^{\lambda \nu}={ }^{*} h^{\lambda \nu}-{ }^{(2) *} k^{\lambda \nu} . \tag{4.5}
\end{equation*}
$$

Proof. When $p=2,(4.2 \mathrm{a})$ and (4.2b) satisfy the following relations:

$$
\begin{align*}
& \left({ }^{*} h^{\lambda \nu}-{ }^{(2) *} k^{\lambda \nu}\right) g_{\lambda \mu}=-{ }^{*} k_{\mu}{ }^{\nu}+\delta_{\mu}^{\nu}, \tag{4.6a}\\
& \left({ }^{*} h^{\lambda \nu}-{ }^{(2) *} k^{\lambda \nu}\right) g_{\mu \lambda}={ }^{*} k_{\mu}{ }^{\nu}+\delta_{\mu}^{\nu} . \tag{4.6b}
\end{align*}
$$

Taking the sum of (4.6a) and (4.6b), and using (2.1), we obtain

$$
\left({ }^{*} h^{\lambda \nu}-{ }^{(2) *} k^{\lambda \nu}\right) h_{\lambda \mu}=\delta_{\mu}^{\nu},
$$

which implies (4.5) in virtue of (2.3).
Theorem 4.4. The determinant of the tensor ${ }^{*} P^{\lambda \nu}$, given by (4.1), never vanishes, i.e.,

$$
\begin{equation*}
\operatorname{det}\left({ }^{*} P^{\lambda \nu}\right) \neq 0 \tag{4.7}
\end{equation*}
$$

Proof. Subtracting (4.6b) from (4.6a), and using (2.1), we obtain

$$
\begin{equation*}
\left({ }^{*} h^{\lambda \nu}-{ }^{(2) *} k^{\lambda \nu}\right) k_{\lambda \mu}=-{ }^{*} k_{\mu}{ }^{\nu} . \tag{4.8}
\end{equation*}
$$

Using (2.4), (4.5) and (4.8), we obtain

$$
\begin{equation*}
k_{\mu}{ }^{\nu}=-h^{\lambda \nu} k_{\lambda \mu}=-\left({ }^{*} h^{\lambda \nu}-{ }^{(2) *} k^{\lambda \nu}\right) k_{\lambda \mu}={ }^{*} k_{\mu}{ }^{\nu} . \tag{4.9}
\end{equation*}
$$

Next, using (2.4), (2.13), (4.5) and (4.9), we obtain

$$
k^{\lambda \nu}=h^{\lambda \alpha} k_{\alpha}{ }^{\nu}=\left({ }^{*} h^{\lambda \alpha}-{ }^{(2) *} k^{\lambda \alpha}\right)^{*} k_{\alpha}{ }^{\nu}={ }^{*} k^{\lambda \nu}-{ }^{(3) *} k^{\lambda \nu}={ }^{*} P^{\lambda \nu} .
$$

From which it follows that in virtue of (2.4),

$$
\begin{aligned}
\operatorname{det}\left({ }^{*} P^{\lambda \nu}\right) & =\operatorname{det}\left(k^{\lambda \nu}\right)=\operatorname{det}\left(h^{\lambda \alpha} k_{\alpha \beta} h^{\beta \mu}\right) \\
& =\operatorname{det}\left(h^{\lambda \alpha}\right) \operatorname{det}\left(k_{\alpha \beta}\right) \operatorname{det}\left(h^{\beta \mu}\right) .
\end{aligned}
$$

Since $\operatorname{det}\left(h^{\lambda \nu}\right) \neq 0$ and $\operatorname{det}\left(k_{\alpha \beta}\right) \neq 0$, we obtain (4.7).

Remark 4.5. Since $\operatorname{det}\left({ }^{*} P^{\lambda \nu}\right) \neq 0$, there is a unique skew-symmetric tensor ${ }^{*} Q_{\lambda \mu}$ satisfying

$$
\begin{equation*}
{ }^{*} P^{\lambda \nu *} Q_{\lambda \mu}=\delta_{\mu}^{\nu} . \tag{4.10}
\end{equation*}
$$

Theorem 4.6. A necessary and sufficient condition for the system (2.12) to admit exactly one $E\left({ }^{*} k\right)$-connection $\Gamma_{\lambda \mu}^{\nu}$ of the form (3.6) is that the basic tensor ${ }^{*} g^{\lambda \nu}$ satisfies the following condition:

$$
\begin{equation*}
\nabla_{\omega}{ }^{*} k^{\lambda \nu}=-2{ }^{*} P_{\omega}{ }^{[\lambda *} Q_{\alpha}{ }^{\nu]} \nabla_{\beta}{ }^{*} k^{\alpha \beta}, \tag{4.11}
\end{equation*}
$$

where ${ }^{*} P^{\lambda \nu}$ is defined by (4.1), and ${ }^{*} Q_{\lambda \mu}$ by (4.10). If this condition is satisfied, then the vector Y^{ν} which defines the $E\left({ }^{*} k\right)$-connection is given by

$$
\begin{equation*}
Y^{\alpha}={ }^{*} Q_{\lambda}{ }^{\alpha} \nabla_{\beta}{ }^{*}{ }^{\lambda \beta} . \tag{4.12}
\end{equation*}
$$

Proof. If the system (2.12) admits a solution of the form (3.6), then the condition (3.7) holds in virtue of Theorem 3.5. Using (4.1), the condition (3.7) is equivalent to

$$
\begin{equation*}
\nabla_{\omega}{ }^{*} k^{\lambda \nu}=-2^{*} P_{\omega}{ }^{[\lambda} Y^{\nu]} . \tag{4.13}
\end{equation*}
$$

Contracting for ω and ν in (4.13), and using the skew-symmetry of ${ }^{*} P^{\lambda \nu}$, we obtain

$$
\begin{equation*}
\nabla_{\beta}{ }^{*} k^{\lambda \beta}=-{ }^{*} P_{\beta}{ }^{\lambda} Y^{\beta} . \tag{4.14}
\end{equation*}
$$

Multiplying ${ }^{*} Q_{\lambda}{ }^{\alpha}$ on both sides of (4.14), we obtain (4.12) in virtue of (4.10). Substituting (4.12) into (4.13), we obtain (4.11). Conversely, suppose that the condition (4.11) holds. With the vector Y^{ν} given by (4.12), define a $\left.{ }^{*} \mathrm{k}\right)$-connection by (3.6), and substitute this connection into (2.12). This connection satisfies (2.12) in virtue of our assumption (4.11). Hence it is Einstein. Therefore there exists an $\mathrm{E}(* \mathrm{k})$-connection $\Gamma_{\lambda \mu}^{\nu}$. Assume now that there exist two $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connections $\Gamma_{\lambda \mu}^{\nu}$ and $\bar{\Gamma}_{\lambda \mu}^{\nu}$:

$$
\begin{align*}
& \Gamma_{\lambda \mu}^{\nu}={ }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}+{ }^{(2) *} k_{\lambda \mu} Y^{\nu}+{ }^{*} k_{\lambda \mu} Y^{\nu}, \\
& \bar{\Gamma}_{\lambda \mu}^{\nu}={ }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}+{ }^{(2) *} k_{\lambda \mu} \bar{Y}^{\nu}+{ }^{*} k_{\lambda \mu} \bar{Y}^{\nu} \quad\left(\bar{Y}^{\nu} \neq Y^{\nu}\right) . \tag{4.15}
\end{align*}
$$

Then in virtue of the proof of Theorem 3.5, Y^{ν} and \bar{Y}^{ν} must satisfy

$$
\begin{equation*}
-2^{*} P_{\omega}{ }^{[\lambda} Y^{\nu]}=\nabla_{\omega}{ }^{*} k^{\lambda \nu}=-2^{*} P_{\omega}{ }^{[\lambda} \bar{Y}^{\nu]} . \tag{4.16}
\end{equation*}
$$

Applying the same method used to derive (4.12), we have from (4.16)

$$
Y^{\alpha}={ }^{*} Q_{\lambda}{ }^{\alpha} \nabla_{\beta}{ }^{*} k^{\lambda \beta}=\bar{Y}^{\alpha},
$$

which contradicts to the assumption (4.15). This proves the uniqueness of the $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection under condition (4.11).

Theorem 4.7. If the condition (4.11) is always satisfied by the basic tensor ${ }^{*} g^{\lambda \nu}$, then the unique $E\left({ }^{*} k\right)$-connection $\Gamma_{\lambda \mu}^{\nu}$ is represented as

$$
\begin{align*}
\Gamma_{\lambda \mu}^{\nu} & ={ }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}+\left({ }^{(2) *} k_{\lambda \mu}+{ }^{*} k_{\lambda \mu}\right)^{*} Q_{\alpha}{ }^{\nu} \nabla_{\beta}{ }^{*} k^{\alpha \beta} \tag{4.17}\\
& ={ }^{*}\left\{\lambda^{\nu}{ }_{\mu}\right\}+{ }^{*} k_{\lambda}{ }^{\omega *}{ }^{*} g_{\omega \mu}{ }^{*} Q_{\alpha}{ }^{\nu} \nabla_{\beta}{ }^{*} k^{\alpha \beta} .
\end{align*}
$$

Proof. Substituting (4.12) into (3.6), we obtain (4.17).
Remark 4.8. The unique $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection (4.17) which is obtained in the present paper will be useful for the n-dimensional considerations of the unified field theory. In particular, applying the similar method[4, 5] used in n - g-UFT, we shall be able to obtain a particular solution and an algebraic solution of ${ }^{*} g$-Einstein's field equation in $n-* g$-UFT.

References

1. A. Einstein, The meaning of relativity, Princeton University Press, Princeton, New Jersey, 1950.
2. J. W. Lee, Field equations on $S E(k)$-manifold X_{n}, Inter. Jour. of Theor. Phys. 30 (1991), 1343-1353.
3. , Geometric studies of n-dimensional $E(k)$-manifold, Tensor, N. S. 51 (1992), 78-82.
4. , An algebraic solution of Einstein's field equations, Tensor, N. S. 61 (1999), 240-244.
5. , A particular solution of Einstein's field equations, Tensor, N. S. 61 (1999), 245-250.
6. K. T. Chung and C. H. Cho, On the n-dimensional $S E$-connection and its conformal change, Nuovo Cimento 100 (1987), 537-550.
7. K. T. Chung, Einstein's connection in terms of ${ }^{*} g^{\lambda \nu}$, Nuovo Cimento 27 (1963), 1297-1324.
8. K. T. Chung and D. H. Cheoi, Relations of two n-dimensional unified field theories, Acta Math. Hung. 45 (1985), 141-149.
9. K. T. Chung and D. K. Jun, On the geometry of the manifold $* g-S E X_{n}$ and its conformal change, Nuovo Cimento 106B (1991c), 1271-1286.
10. V. Hlavatý, Geometry of Einstein's unified field theory, P. Noordhoff Ltd., New York, 1957.

Department of Mathematics
Yonsei University
Wonju, 220-710, Korea
E-mail: jwlee@dragon.yonsei.ac.kr

[^0]: Received September 17, 2004.
 2000 Mathematics Subject Classification: 53A45, 53B50, 53C25.
 Key words and phrases: n - g-UFT, $n-* g$-UFT, Einstein's equation, Einstein connection, ($\left.{ }^{*} \mathrm{k}\right)$-connection, $\mathrm{E}\left({ }^{*} \mathrm{k}\right)$-connection.

 This study was supposed by the Grant of Maeji Institute of Academic Research, Yonsei University, 2002-2004.

