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THE EXISTENCE AND UNIQUENESS
OF E(*k)-CONNECTION IN n-∗g-UFT

Jong Woo Lee

Abstract. The purpose of the present paper is to introduce a new

concept of the E(*k)-connection Γν
λµ, which is both Einstein and

(*k)-connection, and to obtain a necessary and sufficient condition

for the existence of the unique E(*k)-connection in n-∗g-UFT. Next,
under this condition, we shall obtain a surveyable tensorial repre-

sentation of the unique E(*k)-connection in n-∗g-UFT.

1. Introduction

Einstein[1] proposed a new unified field theory that would include
both gravitation and electromagnetism. Characterizing Einstein’s uni-
fied field theory as a set of geometrical postulates in the space-time
X4, Hlavatý[10] gave its mathematical foundation for the first time,
and generalized X4 to the n-dimensional generalized Riemannian man-
ifold Xn, n-dimensional generalization of this theory, the so-called Ein-
stein’s n-dimensional unified field theory(n-g-UFT). Since then many
consequences of this theory has been obtained. In particular, the repre-
sentations of the Einstein connection satisfying Einstein’s equations in
n-g-UFT, imposing some conditions to Xn, were obtained by Chung[6]
and Lee[2, 3]. Corresponding to n-g-UFT, Chung[7, 8] introduced a
new unified field theory, called Einstein’s n-dimensional *g-unified field
theory(n-∗g-UFT). This theory is more useful than n-g-UFT in some
physical aspects. Chung[7∼9] obtained many consequences of this the-
ory. In n-∗g-UFT, however, it has been unable yet to represent a
general n-dimensional Einstein’s connection in a surveyable tensorial
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form. In n-∗g-UFT, a connection Γν
λµ which is both Einstein and (*k)-

connection is called an E(*k)-connection. The purpose of the present
paper is to obtain a necessary and sufficient condition for the existence
of the unique E(*k)-connection in n-∗g-UFT. Next, under this condi-
tion, we shall obtain a precise tensorial representation of the unique
E(*k)-connection. The obtained results and discussions in the present
paper will be useful for the n-dimensional considerations of the unified
field theory.

2. Preliminaries

Let Xn be an n-dimensional generalized Riemannian manifold cov-
ered by a system of real coordinate neighborhoods {U; xν}, where, here
and in the sequel, Greek indices run over the range {1, 2, · · · , n} and fol-
low the summation convention. In the Einstein’s usual n-dimensional
unified field theory(n-g-UFT), the algebraic structure on Xn is imposed
by a basic real non-symmetric tensor gλµ, which may be split into its
symmetric part hλµ and skew-symmetric part kλµ:

(2.1) gλµ = hλµ + kλµ,

where we assume that

(2.2) det(gλµ) 6= 0, det(hλµ) 6= 0, det(kλµ) 6= 0.

Since det(hλµ) 6= 0, we may define a unique tensor hλν(= hνλ) by

(2.3) hλµhλν = δν
µ.

We use the tensors hλν and hλµ as tensors for raising and/or lowering
indices for all tensors defined in n-g-UFT in the usual manner. Then
we may define new tensors by

(2.4) gλµ = gαβhλαhµβ , kλµ = kαβhλαhµβ , kλ
ν = kλµhµν ,

so that in virtue of (2.1) and (2.3), we obtain

(2.5) gλµ = hλµ + kλµ.
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It should be remarked that since kλµ is a skew-symmetric tensor and
det(kλµ) 6= 0, n is even. In n-g-UFT the differential geometric struc-
ture on Xn is imposed by the tensor gλµ by means of a connection Γν

λµ

defined by the Einstein’s equations:

(2.6a) ∂ωgλµ − gαµΓα
λω − gλαΓα

ωµ = 0 (∂ν =
∂

∂xν
),

or equivalently

(2.6b) Dωgλµ = 2Sωµ
αgλα,

where Dω denotes the symbolic vector of the covariant derivative with
respect to Γν

λµ, and Sλµ
ν is the torsion tensor of Γν

λµ.
But in our Einstein’s n-dimensional ∗g-unified field theory(n-∗g-

UFT), the role of the basic tensor is no longer played by gλµ. In
n-∗g-UFT the algebraic structure on the same space Xn is imposed by
the basic real non-symmetric tensor ∗gλν defined by

(2.7) gλµ
∗gλν = gµλ

∗gνλ = δν
µ.

It may be also decomposed into its symmetric part ∗hλν and skew-
symmetric part ∗kλν :

(2.8) ∗gλν = ∗hλν + ∗kλν ,

where we assume that det(∗hλν) 6= 0. Therefore we may also define a
unique tensor ∗hλµ(= ∗hµλ) by

(2.9) ∗hλµ
∗hλν = δν

µ.

We use both ∗hλν and ∗hλµ as tensors for raising and/or lowering
indices for all tensors defined in n-∗g-UFT in the usual manner. Then
we may also define new tensors by

∗gλµ = ∗gαβ ∗hλα
∗hµβ ,(2.10)

∗kλµ = ∗kαβ ∗hλα
∗hµβ , ∗kλ

ν = ∗kαν ∗hαλ,
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so that in virtue of (2.8) and (2.9) we obtain

(2.11) ∗gλµ = ∗hλµ + ∗kλµ.

On the other hand, in n-∗g-UFT the differential geometrical structure
on Xn is imposed by the tensor ∗gλν by means of a connection Γν

λµ

defined by a system of ∗g-Einstein’s equations:

(2.12a) ∂ω
∗gλν + ∗gανΓλ

αω + ∗gλαΓν
ωα = 0,

or equivalently

(2.12b) Dω
∗gλν = −2Sωα

ν ∗gλα.

Hlavatý[10] proved that the system of ∗g-Einstein’s equations (2.12) is
equivalent to the system of original Einstein’s equations (2.6).

The following quantities are frequently used in our further consid-
erations: For every integer p ≥ 1,

(2.13) (0)∗kλ
ν = δν

λ, (p)∗kλ
ν

= ∗kλ
α (p−1)∗kα

ν
= (p−1)∗kλ

α ∗kα
ν .

It should be remarked that the tensor (p)∗kλν is symmetric if p is even,
and skew-symmetric if p is odd.

3. Existence of E(*k)-connection

Agreement 3.1. All our further considerations in the present paper
are dealt in n-∗g-UFT, where n is even. �

Definition 3.2. A connection Γν
λµ is said to be Einstein if it satis-

fies the system of ∗g-Einstein’s equations (2.12). A connection Γν
λµ is

said to be (*k)-connection if its torsion tensor Sλµ
ν is of the form

(3.1) Sλµ
ν = ∗kλµY ν ,

for some nonzero vector Y ν . A connection which is both Einstein and
(*k)-connection is called an E(*k)-connection.
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Theorem 3.3. when for some nonzero vector Y ν the condition (3.1)
holds, the system of equations (2.12) is equivalent to the following
system of equations:

Dω
∗hλν = −2 ∗kω

(λY ν) + 2 (2)∗kω
(λY ν),(3.2a)

Dω
∗kλν = −2 ∗kω

[λY ν] + 2 (2)∗kω
[λY ν].(3.2b)

Proof. Substituting (2.8) and (3.1) into (2.12b), we obtain

(3.3) Dω
∗gλν = −2 ∗kω

λY ν + 2 (2)∗kω
λY ν .

The equations (3.2a) and (3.2b) follow from (3.3) and from

Dω
∗hλν = Dω

∗g(λν), Dω
∗kλν = Dω

∗g[λν].

Conversely, taking the sum of (3.2a) and (3.2b), we obtain (3.3). �

Theorem 3.4. The equation (3.2a) is equivalent to the following
equation:

(3.4) Dω
∗hλµ = 2 ∗kω(λYµ) − 2 (2)∗kω(λYµ).

Proof. Differentiating (2.9) covariantly with respect to Γν
λµ, we ob-

tain

Dω
∗hλµ = −∗hαµ

∗hβλ(Dω
∗hαβ),(3.5a)

Dω
∗hλν = −∗hαν ∗hβλ(Dω

∗hαβ).(3.5b)

Substituting (3.2a) into (3.5a), and using (2.10), we obtain (3.4). Con-
versely, substituting (3.4) into (3.5b), and using (2.10), we obtain
(3.2a). �

Theorem 3.5. when for some nonzero vector Y ν the condition (3.1)
holds, the system of equations (2.12) is equivalent to the followings:

(3.6) Γν
λµ = ∗{λ

ν
µ}+ (2)∗kλµY ν + ∗kλµY ν ,

(3.7) ∇ω
∗kλν = −2(∗kω

[λ − (3)∗kω
[λ)Y ν],

where∇ω is the symbolic vector of the covariant derivative with respect
to the Christoffel symbols ∗{λ

ν
µ} defined by ∗hλµ.
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Proof. From Theorem 3.3 and Theorem 3.4, when for some nonzero
vector Y ν the condition (3.1) holds, the system of equations (2.12) is
equivalent to the system of equations (3.2b) and (3.4). In virtue of
relation

(3.8) Dω
∗hλµ = ∂ω

∗hλµ − ∗hαµΓα
λω − ∗hλαΓα

µω,

and (3.1), we obtain
1
2
∗hνα(Dλ

∗hαµ + Dµ
∗hαλ −Dα

∗hλµ)(3.9a)

= ∗{λ
ν

µ} − 2Sν
(λµ) + Sλµ

ν − Γν
λµ

= ∗{λ
ν

µ}+ 2 ∗k(λ
νYµ) + ∗kλµY ν − Γν

λµ.

On the other hand, it follows from (3.4) that
1
2
∗hνα(Dλ

∗hαµ + Dµ
∗hαλ −Dα

∗hλµ)(3.9b)

=2 ∗k(λ
νYµ) − (2)∗kλµY ν .

Comparing (3.9a) with (3.9b), we obtain (3.6). On the other hand,
substituting (3.6) into

Dω
∗kλν = ∂ω

∗kλν + ∗kανΓλ
αω + ∗kλαΓν

αω,

we obtain

(3.10) Dω
∗kλν = ∇ω

∗kλν − 2 (3)∗kω
[λY ν] + 2 (2)∗kω

[λY ν].

Comparing (3.2b) with (3.10), we obtain (3.7). Conversely, suppose
that (3.6) and (3.7) hold. Substituting (3.6) into (3.8), we obtain (3.4).
Similarly, substituting (3.7) into (3.10), we obtain (3.2b). �

4. Uniqueness of E(*k)-connection

Remark 4.1. In virtue of Theorem 3.5, it is obvious that if the
system of equations (2.12) admits an E(*k)-connection Γν

λµ, it must be
of the form (3.6). This reduces the investigation of an E(*k)-connection
Γν

λµ to the study of the vector Y ν defining (3.6). In order to know the
E(*k)-connection Γν

λµ it is necessary and sufficient to know the vector
Y ν satisfying the equation (3.7), which is the main goal of this section.
Our investigation is based on the skew-symmetric tensor

(4.1) ∗Pλν = ∗kλν − (3)∗kλν .
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Lemma 4.2. For every integer p ≥ 1, the tensor (p)∗kλν satisfies the
following relations:

(p)∗kλνgλµ =
p∑

f=1

(−1)f−1 (p−f)∗kµ
ν + (−1)p ∗hλνgλµ,

(4.2a)

(p)∗kλνgµλ = −
p∑

f=1

(p−f)∗kµ
ν + ∗hλνgµλ.

(4.2b)

Proof. This assertion (4.2a) will be proved by induction on p. Sub-
stituting (2.8) into (2.7), we obtain

(4.3) ∗kλνgλµ = δν
µ − ∗hλνgλµ.

Hence in virtue of (2.13), the assertion (4.2a) holds for the case p = 1.
Now, assume that (4.2a) is true for the case p = m, i.e.,

(4.4) (m)∗kλνgλµ =
m∑

f=1

(−1)f−1 (m−f)∗kµ
ν + (−1)m ∗hλνgλµ.

Multiplying ∗kν
ω to both sides of (4.4), and using (2.13) and (4.3), we

obtain

(m+1)∗kλωgλµ =
m∑

f=1

(−1)f−1 (m−f+1)∗kµ
ω + (−1)m ∗kλωgλµ

=
m∑

f=1

(−1)f−1 (m−f+1)∗kµ
ω + (−1)m δω

µ + (−1)m+1 ∗hλωgλµ

=
m+1∑
f=1

(−1)f−1 (m+1−f)∗kµ
ω + (−1)m+1 ∗hλωgλµ,

which shows that (4.2a) holds for the case p = m+1. By the principle of
induction, the assertion (4.2a) is true for every integer p ≥ 1. Similarly,
we obtain (4.2b). �
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Lemma 4.3. The following relation holds

(4.5) hλν = ∗hλν − (2)∗kλν .

Proof. When p = 2, (4.2a) and (4.2b) satisfy the following relations:

(∗hλν − (2)∗kλν)gλµ = −∗kµ
ν + δν

µ,(4.6a)

(∗hλν − (2)∗kλν)gµλ = ∗kµ
ν + δν

µ.(4.6b)

Taking the sum of (4.6a) and (4.6b), and using (2.1), we obtain

(∗hλν − (2)∗kλν)hλµ = δν
µ,

which implies (4.5) in virtue of (2.3). �

Theorem 4.4. The determinant of the tensor ∗Pλν , given by (4.1),
never vanishes, i.e.,

(4.7) det(∗Pλν) 6= 0.

Proof. Subtracting (4.6b) from (4.6a), and using (2.1), we obtain

(4.8) (∗hλν − (2)∗kλν)kλµ = −∗kµ
ν .

Using (2.4), (4.5) and (4.8), we obtain

(4.9) kµ
ν = −hλνkλµ = −(∗hλν − (2)∗kλν)kλµ = ∗kµ

ν .

Next, using (2.4), (2.13), (4.5) and (4.9), we obtain

kλν = hλαkα
ν = (∗hλα − (2)∗kλα)∗kα

ν = ∗kλν − (3)∗kλν = ∗Pλν .

From which it follows that in virtue of (2.4),

det(∗Pλν) = det(kλν) = det(hλα kαβ hβµ)

= det(hλα)det(kαβ)det(hβµ).

Since det(hλν) 6= 0 and det(kαβ) 6= 0, we obtain (4.7). �
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Remark 4.5. Since det(∗Pλν) 6= 0, there is a unique skew-symmetric
tensor ∗Qλµ satisfying

(4.10) ∗Pλν ∗Qλµ = δν
µ.

Theorem 4.6. A necessary and sufficient condition for the system
(2.12) to admit exactly one E(*k)-connection Γν

λµ of the form (3.6) is

that the basic tensor ∗gλν satisfies the following condition:

(4.11) ∇ω
∗kλν = −2 ∗Pω

[λ ∗Qα
ν]∇β

∗kαβ ,

where ∗Pλν is defined by (4.1), and ∗Qλµ by (4.10). If this condition
is satisfied, then the vector Y ν which defines the E(*k)-connection is
given by

(4.12) Y α = ∗Qλ
α∇β

∗kλβ .

Proof. If the system (2.12) admits a solution of the form (3.6), then
the condition (3.7) holds in virtue of Theorem 3.5. Using (4.1), the
condition (3.7) is equivalent to

(4.13) ∇ω
∗kλν = −2 ∗Pω

[λ Y ν].

Contracting for ω and ν in (4.13), and using the skew-symmetry of
∗Pλν , we obtain

(4.14) ∇β
∗kλβ = −∗Pβ

λ Y β .

Multiplying ∗Qλ
α on both sides of (4.14), we obtain (4.12) in virtue of

(4.10). Substituting (4.12) into (4.13), we obtain (4.11). Conversely,
suppose that the condition (4.11) holds. With the vector Y ν given by
(4.12), define a (*k)-connection by (3.6), and substitute this connection
into (2.12). This connection satisfies (2.12) in virtue of our assumption
(4.11). Hence it is Einstein. Therefore there exists an E(*k)-connection
Γν

λµ. Assume now that there exist two E(*k)-connections Γν
λµ and Γ

ν

λµ:

(4.15)
Γν

λµ = ∗{λ
ν

µ}+ (2)∗kλµY ν + ∗kλµY ν ,

Γ
ν

λµ = ∗{λ
ν

µ}+ (2)∗kλµY
ν

+ ∗kλµY
ν

(Y
ν 6= Y ν).
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Then in virtue of the proof of Theorem 3.5, Y ν and Y
ν

must satisfy

(4.16) −2 ∗Pω
[λ Y ν] = ∇ω

∗kλν = −2 ∗Pω
[λ Y

ν]
.

Applying the same method used to derive (4.12), we have from (4.16)

Y α = ∗Qλ
α∇β

∗kλβ = Y
α
,

which contradicts to the assumption (4.15). This proves the uniqueness
of the E(*k)-connection under condition (4.11). �

Theorem 4.7. If the condition (4.11) is always satisfied by the
basic tensor ∗gλν , then the unique E(*k)-connection Γν

λµ is represented
as

(4.17)
Γν

λµ = ∗{λ
ν

µ}+ ((2)∗kλµ + ∗kλµ)∗Qα
ν ∇β

∗kαβ

= ∗{λ
ν

µ}+ ∗kλ
ω ∗gωµ

∗Qα
ν ∇β

∗kαβ .

Proof. Substituting (4.12) into (3.6), we obtain (4.17). �

Remark 4.8. The unique E(*k)-connection (4.17) which is obtained
in the present paper will be useful for the n-dimensional considerations
of the unified field theory. In particular, applying the similar method[4,
5] used in n-g-UFT, we shall be able to obtain a particular solution
and an algebraic solution of ∗g-Einstein’s field equation in n-∗g-UFT.
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