• Title/Summary/Keyword: Effector T cells

Search Result 130, Processing Time 0.033 seconds

Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function

  • Changhon Lee;Haena Lee;John Chulhoon Park;Sin-Hyeog Im
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.7.1-7.27
    • /
    • 2023
  • The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.

CD4+CD25+ Regulatory T Cells Selectively Diminish Systemic Autoreactivity in Arthritic K/BxN Mice

  • Kang, Sang Mee;Jang, Eunkyeong;Paik, Doo-Jin;Jang, Young-Ju;Youn, Jeehee
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.64-69
    • /
    • 2008
  • Although the arthritis symptoms observed in the K/BxN model have been shown to be dependent on the functions of T and B cells specific to the self antigen glucose-6-phosphate isomerase, less is known about the in vivo roles of $CD4^{+}CD25^{+}$ regulatory T($T_{reg}$) cells in the pathology of K/BxN mice. We determined the quantitative and functional characteristics of the $T_{reg}$ cells in K/BxN mice. These mice contained a higher percentage of $Foxp3^+\;T_{reg}$ cells among the $CD4^+$ T cells than their BxN littermates. These $T_{reg}$ cells were anergic and efficiently suppressed the proliferation of $na\ddot{i}ve$ $CD4^+$ T cells and cytokine production by effector $CD4^+$ T cells in vitro. Antibody-mediated depletion of $CD25^+$ cells caused K/BxN mice to develop multi-organ inflammation and autoantibody production, while the symptoms of arthritis were not affected. These results demonstrate that despite the inability of the $T_{reg}$ cells to suppress arthritis development, they play a critical role protecting the arthritic mice from systemic expansion of autoimmunity.

Resveratrol Induces Apoptosis in Primary Human Prostate Cancer Cells (Primary 인체 전립선 암세포에서 Resveratrol의 Apoptosis 유도 효과)

  • Kang, Hye-In;Kim, Jae-Yong;Cho, Hyun-Dong;Park, Kyung-Wuk;Kang, Jum-Soon;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.8
    • /
    • pp.1119-1125
    • /
    • 2010
  • To evaluate resveratrol as a prostate cancer preventive material, we investigated its anti-proliferative and apoptotic effects in RC-58T/h/SA#4 primary human prostate cancer cells. Resveratrol significantly decreased the number of viable RC-58T/h/SA#4 cells in a dose- and time-dependent manner. Resveratrol showed cytotoxicity against RC-58T/h/SA#4, LNCaP, PC-3 human prostate cancer cells with $IC_{50}$ values of 245, 320 and $340\;{\mu}M$, respectively. However the cytotoxic potential of resveratrol against normal RWPE-1 cells was lower ($IC_{50}=982\;{\mu}M$). Resveratrol induced cell death as evidenced by the increased formation of apoptotic bodies, nuclear condensation, sub-G1 phase, and DNA fragmentation. Resveratrol activated initiator caspases 8, and 9 as well as effector caspase 3 in a dose-dependent manner. Furthermore, the general caspase inhibitor z-VAD-fmk significantly inhibited resveratrol-induced apoptosis compared to cells without treatment. These results clearly indicate that resveratrol-induced apoptosis was dependent on caspase activation. Further, resveratrol modulated the down regulation of Bcl-2 (anti-apoptotic), and Bid. However, the level of Bax (pro-apoptotic) remained unchanged. These results suggest that resveratrol induced apoptosis in RC-58T/h/SA#4 cells via a mitochondrial-mediated caspase-dependent pathway, suggesting therapeutic potential against prostate cancer.

The Roles of Immune Regulatory Factors FoxP3, PD-1, and CTLA-4 in Chronic Viral Infection (만성 바이러스 감염에서 면역조절인자 FoxP3, PD-1 및 CTLA-4의 역할)

  • Cho, Hyosun
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.221-227
    • /
    • 2013
  • Human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) cause viral infections that lead to chronic diseases. When they invade human body, virus specific T cells play an important role in antiviral effector functions including killing virus-infected cells and helping B cells to produce specific antibodies against viral proteins. The antiviral activity of T cells is usually affected by immune-regulatory factors that express on surface of T cells. Recently, many researchers have investigated the relationship between effector functions of virus specific T cells and characteristics of immune regulatory factors (e.g., CD28, CD25, CD45RO, FoxP3, PD-1, CTLA-4). In particular, Immune inhibitory molecules such as forkhead box P3 (FoxP3), programmed death-1 (PD-1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are associated with T-cell dysfunction. They are shown to be up-regulated in chronic viral diseases such as hepatitis B, hepatitis C or human immunodeficiency virus infection. Therefore, the positive correlation between viral persistence and expression of immune regulatory factors (FoxP3, PD-1, and CTLA-4) has been suggested. In this review, the roles of immune regulatory factors FoxP3, PD-1, and CTLA-4 were discussed in chronic viral diseases such as HIV, HBV, or HCV.

Effector Memory CD8+ and CD4+ T Cell Immunity Associated with Metabolic Syndrome in Obese Children

  • Yang, Da-Hee;Lee, Hyunju;Lee, Naeun;Shin, Min Sun;Kang, Insoo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • Purpose: We investigated the association of effector memory (EM) CD8+ T cell and CD4+ T cell immunity with metabolic syndrome (MS). Methods: Surface and intracellular staining of peripheral blood mononuclear cells was performed. Anti-interleukin-7 receptor-alpha (IL-7Rα) and CX3CR1 antibodies were used to stain the subsets of EM CD8+ T cells, while anti-interferon-gamma (IFN-γ), interleukin-17 (IL-17), and forkhead box P3 (FOXP3) antibodies were used for CD4+ T cell subsets. Results: Of the 47 obese children, 11 were female. Children with MS had significantly higher levels of serum insulin (34.8±13.8 vs. 16.4±6.3 µU/mL, p<0.001) and homeostasis model assessment of insulin resistance (8.9±4.1 vs. 3.9±1.5, p<0.001) than children without MS. Children with MS revealed significantly higher frequencies of IL-7Rαlow CD8+ T cells (60.1±19.1% vs. 48.4±11.5%, p=0.047) and IL-7RαlowCX3CR1+ CD8+ T cells (53.8±20.1% vs. 41.5±11.9%, p=0.036) than children without MS. As the serum triglyceride levels increased, the frequency of IL-7RαlowCX3CR1+ and IL-7RαhighCX3CR1- CD8+ T cells increased and decreased, respectively (r=0.335, p=0.014 and r=-0.350, p=0.010, respectively), in 47 children. However, no CD4+ T cell subset parameters were significantly different between children with and without MS. Conclusion: In obese children with MS, the changes in immunity due to changes in EM CD8+ T cells might be related to the morbidity of obesity.

Unleashing the Therapeutic Potential of CAR-T Cell Therapy Using Gene-Editing Technologies

  • Jung, In-Young;Lee, Jungmin
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.717-723
    • /
    • 2018
  • Chimeric antigen receptor (CAR) T-cell therapy, an emerging immunotherapy, has demonstrated promising clinical results in hematological malignancies including B-cell malignancies. However, accessibility to this transformative medicine is highly limited due to the complex process of manufacturing, limited options for target antigens, and insufficient anti-tumor responses against solid tumors. Advances in gene-editing technologies, such as the development of Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), have provided novel engineering strategies to address these limitations. Development of next-generation CAR-T cells using gene-editing technologies would enhance the therapeutic potential of CAR-T cell treatment for both hematologic and solid tumors. Here we summarize the unmet medical needs of current CAR-T cell therapies and gene-editing strategies to resolve these challenges as well as safety concerns of gene-edited CAR-T therapies.

Oncolytic Vaccinia Virus Expressing 4-1BBL Inhibits Tumor Growth by Increasing CD8+ T Cells in B16F10 Tumor Model

  • Lee, Na-Kyung;Kim, Hong-Sung
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.210-217
    • /
    • 2012
  • Oncolytic viral vectors have shown good candidates for cancer treatment but have many limitations. To improve the therapeutic potential of oncolytic vaccinia virus, we developed a recombinant vaccinia virus expressing the 4-1BBL co-stimulatory molecule or CCL21. 4-1BBL and CCL21 expression was identified by FACS analysis and immunoblotting. rV-4-1BBL vaccination shows significant tumor regression compared to rV-LacZ, but rV-CCL21 shows rapid tumor growth compared to rV-LacZ in the poorly immunogenic B16 murine melanoma model. 4-1BBL expression resulted in the increase of the number of CD8+ T cells and especially the increase of effector (CD62L-CD44+) CD8+ T cells. These data suggest 4-1BBL may be the potential target for enhancement of tumor immunotherapy.

Tumor-derived CD4+CD25+ Tregs Inhibit the Maturation and Antigen-Presenting Function of Dendritic Cells

  • Du, Yong;Chen, Xin;Lin, Xiu-Qing;Wu, Wei;Huang, Zhi-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2665-2669
    • /
    • 2015
  • CD4+CD25+regulatory T cells (Tregs) play a key role in regulation of immnue response and maintenance of self-tolerance. Studies have found Tregs could suppress tumor-specific T cell-mediated immune response and promote cancer progression. Depletion of Tregs can enhance antitumor immunity. Dendritic cells (DCs) are professional antigen-presenting cells and capable of activating antigen-specific immune responses, which make them ideal candidate for cancer immunotherapy. Now various DC vaccines are considered as effective treatment for cancers. The aim of this study was to evaluate variation of Tregs in BALB/C mice with hepatocellular carcinoma and investigate the interaction between tumor-derived Tregs, effector T cells (Teff) and splenic DCs. We found the percentages of Tregs/CD4+ in the peripheral blood of tumor-bearing mice were higher than in normal mice. Tumor-derived Tregs diminished the up-regulation of costimulatory molecule expression on splenic DCs, even in the presence of Teff cells and simultaneously inhibited IL-12 and $TNF-{\alpha}$ secretion by DCs.

Induction of Apoptosis by Extracts of Trichosanthes kirilpwii var. japonica in HL-60 Leukemia Cells (노랑하늘타리 추출물의 HL-60 혈액종양세포 Apoptosis 유도 효과)

  • 김상철;박수영;현재희;이영기;박덕배;강사윤;유은숙;강희경
    • YAKHAK HOEJI
    • /
    • v.47 no.5
    • /
    • pp.319-324
    • /
    • 2003
  • This study examined the inhibitory effect of extracts of Trichosanthes kirilpwii sorted according to the parts on the growth of HL-60 cells. The growth of HL-60 leukemia cells was markedly inhibited by the treatment of the 80% methanol extract of roots (10 $\mu\textrm{g}$/mι), stems (50$\mu\textrm{g}$/mι), pips (10$\mu\textrm{g}$/mι), and gourds (100 $\mu\textrm{g}$/mι), or the ethylacetate fraction of leaves (100 $\mu\textrm{g}$/mι). when the HL-60 cells were treated with the extracts of T. kirilpwii sorted according to the parts, DNA fragmentation and sub-G1 hypodiploid cells were observed. Moreover, T. kirilpwii extracts increased the level of the expression of the active form of caspase-3 and the activation of caspase-3 was demonstrated by the cleavage of poly(ADP-ribose) polymerase, a vital substrate of effector caspase. The results suggest that the inhibitory effect of extracts of T. kirilpwii sorted according to the parts on the growth of HL-60 cells seems to arise from the induction of apoptosis.

Homologous Expression and Quantitative Analysis of T3SS-Dependent Secretion of TAP-Tagged XoAvrBs2 in Xanthomonas oryzae pv. oryzae Induced by Rice Leaf Extract

  • Kim, S.H.;Lee, S.E.;Hong, M.K.;Song, N.H.;Yoon, B.;Viet, P.T.;Ahn, Y.J.;Lee, B.M.;Jung, J.W.;Kim, K.P.;Han, Y.S.;Kim, J.G.;Kang, L.W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.679-685
    • /
    • 2011
  • Xanthomonas oryzae pv. oryzae (Xoo) produces a putative effector, XoAvrBs2. We expressed XoAvrBs2 homologously in Xoo with a TAP-tag at the C-terminus to enable quantitative analysis of protein expression and secretion. Addition of rice leaf extracts from both Xoo-sensitive and Xoo-resistant rice cultivars to the Xoo cells induced expression of the XoAvrBs2 gene at the transcriptional and translational levels, and also stimulated a remarkable amount of XoAvrBs2 secretion into the medium. In a T3SS-defective Xoo mutant strain, secretion of the TAPtagged XoAvrBs2 was blocked. Thus, we elucidated the transcriptional and translational expressions of the XoAvrBs2 gene in Xoo was induced in vitro by the interaction with rice and the induced secretion of XoAvrBs2 was T3SSdependent. It is the first report to measure the homologous expression and secretion of XoAvrBs2 in vitro by rice leaf extract. Our system for the quantitative analysis of effector protein expression and secretion could be generally used for the study of host-pathogen interactions.