• Title/Summary/Keyword: Effective compressive strength

Search Result 658, Processing Time 0.036 seconds

A Study on the Engineering Characteristics of Power Plant Coal Ash (화력발전소 부산물인 석탄회의 공학적 특성에 관한 연구)

  • Kuk, Kilkeun;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.25-34
    • /
    • 2010
  • In this study characteristics for reclaimed ash was studied to enlarge the usage of reclaimed ash which is reaching to 72 million ton producted from whole thermal power plants in South Korea. Fly ash and bottom ash are reclaimed separately at some of thermal power plants. However, typically bottom ash and fly ash are mixed when they are buried at most of the thermal power plant, as a result the engineering characteristics of ponded ash are not investigated properly. In order to investigate the engineering characteristics of the ponded ash, laboratory tests were performed with ponded ash and fly ash from youngheung and samcheonpo thermal power plants. Specific gravity, unit weight, and grain size analysis test were fulfilled to evaluate the physical characteristics and triaxial permeability test, direct shear test, unconfined compressive strength test, compaction test were performed to evaluate the mechanical characteristics. And also engineering characteristics of coal ash from anthracite and Bituminous thermal power plants were compared and studied respectively. As a result of the study, it was confirmed that using coal ash from Bituminous thermal power plants can be effective in the place where lightweight materials are required and using coal ash from anthracite thermal power plants can be effective as backfill material which require higher permeability. Finally, it was confirmed that fly ash from youngheung thermal power plants which has the lowest permeability among the tested material is suitable for a field requiring impermeable material.

Shrinkage Properties of High Performance Concrete Depending on Specimen Size and Constraint of Reinforcing Bar (공시체 크기 변화 및 철근구속에 따른 고성능콘크리트의 수축 특성)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.13-19
    • /
    • 2006
  • This paper reports the test results for shrinkage properties of low shrinkage high performance concrete developed by the authors depending on specimen size and constraint of reinforcing bar. As properties in fresh concrete low shrinkage high performance concrete(LSHPC) combined with expansive additives and shrinkage reducing admixture resulted in increase SP dosage due to loss of fluidity compared with that of control mixture concrete, while the dosage of AE agent was decreased. LSHPC exhibited higher compressive and tensile strength than control mixture concrete. For the effect of specimen size, an increase in specimen size led to a reduction of drying shrinkage. However, it was found that the autogenous shrinkage was not affected by the specimen size and measuring method. For constraint condition, an increase in the ratio of reinforcing bar caused the slight reduction in the strain of reinforcing bar, while it increased the autogenous shrinkage stress. It was seen that LSHPC was effective to reduce autogenous shrinkage by as much as 70% compared with control mixture high performance concrete.

A Study on the Performace Evaluation of Antimicrobial Concrete Using Liquid Reinforcing Antibiotics (액상 수밀성 항균제를 사용한 항균 콘크리트의 성능 평가에 관한 연구)

  • Kim, Gyu-Yong;Kim, Moo-Han;Lee, Eui-Bae;Cho, Bong-Suk;Khil, Bae-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.113-120
    • /
    • 2007
  • In this study, researches for the development of antibiotics and antimicrobial concrete were conducted to reduce biochemical corrosion of sewage concrete. First of all, desired performance, such as watertightness, antibiosis, homogeneity, workability and harmlessness, was proposed and performance of antibiotics and antimicrobial concrete were evaluated by them. As results of this study, dispersibility and antibiosis of liquid antibiotics superior to powdery antibiotics. Antibiosis of antimicrobial concrete was verified, and amount of elution of harmful and effective ingredients was little. In workability, setting time of antimicrobial concrete was delayed. Compressive strength and resistance to carbonation of antimicrobial concrete were more increased than ordinary concrete. Also, as little pore volume and closed structure of antimicrobial concrete were observed, watertightness of it was verified. Finally artificial accelerating test for biochemical corrosion was proposed, and its suitability was experimentally proved.

Support Characteristics of Rock Bolt and Spiral Bolt (록 볼트 및 스파이럴 볼트의 지보특성)

  • Cho, Young-Dong;Song, Myung-Kyu;Lee, Chung-Shin;Kang, Choo-Won;Ko, Jin-Seok;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • This study is to evaluate an effect of supports with respect to these supports after comparing the characteristic of support between rock bolt of a widely used type and spiral bolt of a new type. For these purposes, we performed pull-out test in laboratory about rock and spiral bolts in the case of cement-mortar grout curing periods, 7 and 28 days, then calculated pull-out load, displacement, external pressure, inner pressure and shear stress using data obtained from the results of pull-out test, respectively. In relation between pull-out load and displacement, displacement of spiral bolt is larger than one of rock bolt. It is considered that mechanical property of rock bolt is due to larger than one of spiral bolt. In addition, displacement of supports shows nearly same or decreasing with curing periods. We found that because adhesive force between supports and cement-mortar grout is increasing with compressive strength of grout according to curing periods. The inner pressure of spiral bolt is represented larger than one of rock bolt at a step of same pull-out load. It is suggested that spiral bolt is more stable than rock bolt, maintaining stability of ground or rock mass, when supports are installed in a ground or rock mass under the same condition. Putting together with above results, we can consider that spiral bolt as a new support on an aspect of pull-out load and inner pressure is larger than rock bolt in a ground or rock mass under the same condition. Moreover, spiral bolt is more effective support than rock bolt, considering an economical and constructive aspects of supports, as well as ground or rock stability before or after installing supports.

A Study on the Production of Landfill-Cover Material Using the Physical Characteristics of Sludge and the Reduction of Odor (슬러지의 물리적 특성을 이용한 매립복토재 생산과 악취저감에 대한 연구)

  • Park, Jung Hyun;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2020
  • The aims of this study is to improve physical properties of the sewage sludge and the process sludge generated in the leachate treatment by mixing the dry fuel, to develop the neutral solidifing agents that reduce oder, and to recycle the sewage and the process sludges as landfill cover materials. The mixing ratio (W/W) of sludges and dry fuel was appropriate at about 1:1, and the mixed materials were shown to be homogeneous at that ratio. We could know that when the sludges were mixed with dry fuel, moisture contents and viscosities are reduced, and air passages are formed between particles and particles. The various mixing tests and odor tests showed that the neutral solidifing agent was effective for the odor reduction. The main ingredient of the solidifing agent is the ash of sewage sludge, enabling it competitive in waste recycling and production costs. The landfill cover, using developed neutral solidification agent, improved physical properties to satisfy the quality standards and to increase the compressive strength. It also proved to reduce the value of complex oder and the usage of solidification agent to 1/3 (3,000 to 1,000) and to 1/8 (50% to 6%), respectively, from the comparative study with alkaline solidified landfill cover. Further research is under way to prove that this can be mixed with general soil to be used as a soil improvement agent for plant cultivation.

Application of linear-array microtremor surveys for rock mass classification in urban tunnel design (도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용)

  • Cha, Young-Ho;Kang, Jong-Suk;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.108-113
    • /
    • 2006
  • Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

Effect of New Mattress System with Vegetation Base Materials on the Vegetation Coverage of Stream bank (계안 복원을 위한 매트리스형 식생기반재 돌망태 공법의 계안사면 피복효과)

  • Choi, Hyung Tae;Jeong, Yong-Ho;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.175-184
    • /
    • 2012
  • This study was conducted to develop new mattress systems with vegetation base materials for protecting stream bank and rapid rehabilitation. Vegetation base materials are primarily compounded with fine soil, organic composts and peat moss as plant fibers, a water retainer and a soil improver. Peat moss can usually provide necessary natural fibers and organic materials in soil. Especially, peat moss can absorb up to 25 times its own weight in water and is therefore valued as a water retainer to prevent drying effect of vegetation base materials which can harm the growth of vegetation in mattresses. Normally mattress systems resist the lateral earth pressures or stream power by their own weight. Therefore, filled materials must have suitable weight, compressive strength and durability to resist the loading, as well as the effects of water and weathering. In this project, 100 to 200-mm clean, hard stones were basically specified, and about 50-mm rubbles were also used. Test application of new mattress system carried out in the stream bank of a small stream in the Gwangreung experimental forest, belonging to Korea Forest Research Institute (KFRI) in December 16th, 2006. As a result of the monitoring of vegetation coverage of test application plots (each plot size is 4 by 2 m), the coverage of all plots reached 100% in the end of May, 2007 (approximately 50 days passed after the first gemination of vegetation). The coverage of the plots using big hard stones and organic composts and the plots containing peat moss increased more rapidly. The results show that peat moss is effective to retain soil moisture and establish more sound environment for vegetation gemination.

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold (3 차원 Blended PCL (60 wt %)/β-TCP (40 wt %) 인공지지체의 제작 및 특성 평가)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.

Research on Fire Safety of Mortar-Containing Waste Tire Powders and Flame Retardant (폐타이어 분말과 난연제가 혼입된 모르타르의 화재안전에 관한 연구)

  • Park, Jeong-Jin;Son, Ki-Sang
    • Fire Science and Engineering
    • /
    • v.24 no.4
    • /
    • pp.12-17
    • /
    • 2010
  • The purpose of this study is to determine how effectively waste tire recycled material mixed with flame retardant work in combating fire. As discovered in the previous study, waste tire mixed with cement mortar has more insulation capacity. However, this mortar is weak against fire. Therefore flame retardant, with a specific proportional mix, will be added to increase its fire prevention capacity. Tests will be made in accordance with ISO 5657 procedures for measuring fire ignition time, flame and shape variation of test pieces at the Building Material Test Institute. The test piece will be set up with horizontal levels having a constant radiation heat of $1{\sim}5W/cm^2$. Temperature transfers and increases from the surface into the interior. Combustible gases result due to pyrolysis, and regular contact is maintained between the fire source and the center of the test piece for assessment purposes. Ignition has not been occurred without adding retardant meaning that there is almost no possibility of ignition of waste tire particle. This fact can be considered as fire load to appreciate a volume of combustion materials. Flame is not occurred due to heat-absorbing effect by adding non-organic series retardant into waste tire particle. Conclusions have been summarized as follows; 1) Combustion of building material can be decreased by adding retardant to waste tire-mixing mortar. But compressive strength and insulation capacity of the material should be measured later. 2) Firing prevention and ignition are main points of building fire. Reasonable fire engineering assessment of interior material should be made for establishing effective disaster prevention system.