Browse > Article
http://dx.doi.org/10.3795/KSME-A.2014.38.4.371

Fabrication and Characteristic Evaluation of Three-Dimensional Blended PCL (60 wt %)/β-TCP (40 wt %) Scaffold  

Sa, Min-Woo (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
Kim, Jong Young (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.38, no.4, 2014 , pp. 371-377 More about this Journal
Abstract
In tissue engineering, a scaffold is a three-dimensional(3D) structure that serves as a template for regeneration the functions of damaged tissues or organs. Among materials for scaffolds, polycaprolactone(PCL) and ${\beta}$-tricalcium phosphate(${\beta}$-TCP) are biodegradable and biocompatible. In this study, we fabricated 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %), and pure ${\beta}$-TCP scaffolds by a multi-head scaffold fabrication system. Scaffolds with a pore size of $600{\pm}20{\mu}m$ was observed by scanning electron microscopy. The effects of 3D PCL, blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) and pure ${\beta}$-TCP scaffolds were analyzed by evaluating their mechanical characteristics. In addition, in an in-vitro study using osteoblast-like saos-2 cells, we confirmed the effects of 3D scaffolds on cellular behaviors such as cell adhesion and proliferation. In summary, the 3D blended PCL (60 wt %)/${\beta}$-TCP (40 wt %) scaffold was found to be suitable for human cancellous bone in terms of its the compressive strength, biocompatibility, and osteoconductivity. Thus, blending PCL and ${\beta}$-TCP could be a promising approach for fabricating 3D scaffolds for effective bone regeneration.
Keywords
Tissue Engineering; Scaffold; Biomaterial; Multi-Head Scaffold Fabrication System; Saos-2 Cells;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Byun, I. S., Sarkar, S. K., Seo, H. S., Lee, B. T. and Song, H. Y., 2010, "Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast," Korean J. Mater. Res., Vol. 20, No. 3, pp. 155-160.   DOI   ScienceOn
2 Leong, K. F., Cheah, C. M. and Chua, C. K., 2010, "Solid Freeform Fabrication of Three-Dimensional Scaffolds for Engineering Replacement Tissues and Organs," Biomaterials, Vol. 24, pp. 2363-2378.
3 Sohn, Y. S., Jung, J. W., Kim, J. Y. and Cho, D. W., 2011, "Investigation of Bi-Pore Scaffold Based on the Cell Behaviors on 3D Scaffold Patterns," Tissue Eng. Regen. Med., Vol. 8, No. Suppl. 2, pp. 66-72.
4 Khang, G. S., Kim, M. S., Min, B. H., Lee, I. W., Rhee, J. M. and Lee, H, B., 2006, "Scaffolds for Tissue Engineering," Tissue Eng. Regen. Med., Vol. 3, No. 4, pp. 376-395.
5 Marco, D., Dinuccio, D., Stefania, C., Michele, A., Paulo, J. B. and Federica, C., 2009, "Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications," Int. J. Biomater., Vol. 2009, 239643 (9pp).
6 Hoque, M. E., Feng, W., Wong, Y. S., Hutmacher, D. W., Li, S., Huang, M. H., Vert, M., and Bartolo, P. J., 2008, "Scaffolds Designed and Fabricated with Elastic Biomaterials Applying CAD-CAM Technique," Tissue Eng. Part A, Vol. 14, No. 5, p. 907.
7 Hutmacher, D. W, Schantz, I., Ng. K. W., Teoh, S. H. and Tan, K. C., 2001, "Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling," J. Biomed. Mater. Res., Vol. 55, No. 2, pp. 203-216.   DOI
8 Moutos, F. T., Freed, L. E. and Guilak, F., 2007, "A Biomimetic Three-dimensional Woven Composite Scaffold for Functional Tissue Engineering of Cartilage," Nat. Mater., Vol. 6, pp. 162-167.   DOI   ScienceOn
9 Sa, M. W. and Kim, J. Y., 2013, "Effect of Various Blending Ratios on the Cell Characteristics of PCL and PLGA Scaffolds Fabricated by Polymer Deposition System," Int. J. Prec. Eng. Manuf., Vol. 14, No. 4, pp. 649-655.   DOI   ScienceOn
10 Shim, J. H., Lee, J. S. and Kim, J. Y., 2012, "Fabrication of Solid Freeform Based 3D Scaffold and Its In-vitro Characteristic Evaluation for Bone Tissue Engineering," Tissue Eng. Regen. Med., Vol. 11, No. 3, pp. 694-701.
11 Rezwan, K., Chen, Q. Z, Blaker, J. J., and Boccaccini, A. R., 2006, "Biodegradable and Bioactive Porous Polymer/inorganic Composite Scaffolds for Bone Tissue Engineering," Biomaterials, Vol. 27, pp. 4313-4331.
12 Su, J., Chen, L. and Li, L., 2012, "Characterization of Polycaprolactone and Starch Blends for Potential Application within the Biomaterials Field," Afr. J. Biotechnol., Vol. 11, No. 3, pp. 694-701.
13 Bellucci, D., Sola, A. and Cannillo, V., 2011, "A Revised Replication Method for Bioceramic Scaffolds," Bioceram. Dev. Appl., Vol. 1, D110401 (8pp).
14 Wilson, C. E., van Blitterswijk, C. A., Verbout, A. J., Dhert, W. J. A. and de Bruijin, J. D., 2011, "Scaffolds with a Standardized Macro-architecture Fabricated from Several Calcium Phosphate Ceramics using an Indirect Rapid Prototyping Technique," J. Mater. Sci. Mater. Med., Vol. 22, pp. 97-105.   DOI   ScienceOn
15 Dorozhkin, S. V., 2010, "Bioceramics of Calcium Orthophosphates," Biomaterials, Vol. 31, pp. 1465-1485.   DOI   ScienceOn
16 Yunos, D. M., Bretcanu, O. and Boccaccini, A. R., 2008, "Polymer-bioceramic Composites for Tissue Engineering Scaffolds," J. Mater. Sci., Vol. 43, No. 13, pp. 4433-4442.   DOI   ScienceOn
17 Seol, Y. J., Park, D. Y., Park, J. Y., Kim, S. W., Park, S. J. and Cho, D. W., 2013, "A New Method of Fabricating Robust Freeform 3D Ceramic Scaffolds for Bone Tissue Regeneration," Biotechnol. Bioeng., Vol. 110, No. 5, pp. 1444-1455.   DOI   ScienceOn
18 Yefang, Z., Hutmacher, D. W., Varawan, S. L. and Meng, L. T., 2007, "Comparison of Human Alveolar Osteoblasts Cultured on Polymer-ceramic Composite Scaffolds and Tissue Culture Plates," Int. J. Oral Maxillofac. Surg., Vol. 36, pp. 137-145.   DOI   ScienceOn
19 Tripathi, G. and Basu, B., 2012, "A Porous Hydroxyapatite Scaffold for Bone Tissue Engineering: Physico-Mechanical and Biological Evaluations," Ceram. Int., Vol. 38, pp. 341-349.   DOI   ScienceOn
20 Hench, L. L., and Wilson, J., 1993, "An Introduction to Bioceramics," Academic Press, Vol. 12.
21 Sa, M. W. and Kim, J. Y., 2013, "A Study on Fabrication of 3D Scaffolds Using Bio-Ceramic Fabrication System Based on Solid Free-Form Fabrication Technique," Tissue Eng. Regen. Med., Vol. 10, No. Suppl. 2, pp. 56-61.
22 Chung, H. S., Jee, H. S. and Das, S., 2010, "Selective Laser Sintering of PCL/TCP Composites for Tissue Engineering Scaffolds," J. Mech. Sci. Technol., Vol. 24, pp. 241-244.   DOI   ScienceOn
23 Wu, Q., Zhang, X., Wu, B. and Huang W., 2013, "Effects of Microwave Sintering on the Properties of Porous Hydroxyapatite Scaffolds," Ceram. Int., Vol. 39, pp. 2389-2395.   DOI   ScienceOn
24 Yeo, A., Check, C., Teoh, S. H., Zhang, Z. Y., Buser, D. and Bosshardt, D. D., 2011, "Lateral Ridge Augmentation Using a PCL-TCP Scaffold in a Clinically Relevant but Challenging Micro Pig Model," Clin. Oral Implants Res., Vol. 23, pp. 1322-1332.
25 Lee, J. S., Cha, H. D., Shim, J. H., Jung, J. W., Kim, Y. Y. and Cho, D. W., 2012, "Effect of Pore Architecture and Stacking Direction on Mechanical Properties of Solid Freeform Fabrication-based Scaffold for Bone Tissue Engineering," J. Biomed. Mater. Res. Part A, Vol. 100A, pp. 1846-1853.
26 Ryu, H. S., Youn, H. J., Hong, K. S., Chang, B. S., Lee, C. K. and Chung, S. S., 2002, "An Improvement in Sintering Property of ${\beta}$-Tricalcium Phosphate by Addition of Calcium Pyrophosphate," Biomaterials, Vol. 23, pp. 909-914.   DOI   ScienceOn
27 Miranda, P., Saiz, E., Gryn, K. and Tomsia, A. P., 2005, "Sintering and Robocasting of ${\beta}$-Tricalcium Phosphate Scaffolds for Orthopedic Applications," Acta Biomater., Vol. 2, pp. 457-466.
28 Lee, S. H., Park, S. A. and Kim, W. D., 2010, "Fabrication of Porous 3D PCL Scaffold Using Rapid Prototyping System," Tissue Eng. Regen. Med., Vol. 7, No. 2, pp. 211-216.
29 Lu, L., Zhang, Q., Wootton, D., Chiou, R., Li, D., Lu, B., Lelkes, P. and Zhou, J., 2012, "Biocompatibility and Biodegradation Studies of PCL/${\beta}$-TCP Bone Tissue Scaffold Fabricated by Structural Porogen Method," J. Mater. Sci. Mater. Med., Vol. 23, pp. 2217-2226.   DOI   ScienceOn
30 Franco, J., Hunger, P., Launey, M. E., Tomsia, A. P. and Saiz, E., 2010, "Direct Write Assembly of Calcium Phosphate Scaffolds Using a Water-Based Hydrogel," Acta Biomater., Vol. 6, pp. 218-228.   DOI   ScienceOn
31 Shim, J. H., Kim, J. Y., Park, J. K., Hahn, S. K., Rhie, J. W., Kang, S. W., Lee, S. H. and Cho, D. W., 2010, "Effect of Thermal Degradation of SFF-based PLGA Scaffolds Fabricated Using a Multi-head Deposition System Followed by Change of Cell Growth Rate," J. Biomater. Sci. Polym. Ed., Vol. 21, No. 8-9, pp. 1069-1080.   DOI   ScienceOn
32 Zein, I., Hutmacher, D. W., Tan, K. C. and Teoh, S. H., 2002, "Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications," Biomaterials, Vol. 23, pp. 1169-1185.   DOI   ScienceOn