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ABSTRACT

Urban conditions, such as existing underground facilities and
ambient noise due to cultural activity, restrict the general application
of conventional geophysical techniques. At a tunnelling site in an
urban area along an existing railroad, we used the refraction
microtremor (REMI) technique (Louie, 2001) as an alternative
way to get geotechnical information. The REMI method uses
ambient noise recorded by standard refraction equipment and a
linear geophone array to derive a shear-wave velocity profile. In
the inversion procedure, the Rayleigh wave dispersion curve is
picked from a wavefield transformation, and iteratively modelled
to get the S-wave velocity structure. :

The REMI survey was carried out along the line of the planned
railway tunnel. At this site vibrations from trains and cars provided
strong seismic sources that allowed REMI to be very effective.
The objective of the survey was to evaluate the rock mass rating
(RMR), using shear-wave velocity information from REMI. First,
the relation between uniaxial compressive strength, which is a
component of the RMR, and shear-wave velocity from laboratory
tests was studied to learn whether shear-wave velocity and RMR are
closely related. Then Suspension PS (SPS) logging was performed
in selected boreholes along the profile, in order to draw out the
quantitative relation between the shear-wave velocity from SPS
logging and the RMR determined from inspection of core from the
same boreholes. In these tests, shear-wave velocity showed fairly
good correlation with RMR. A good relation between shear-wave
velocity from REMI and RMR could be obtained, so it is possible
to estimate the RMR of the entire profile for use in design of the
underground tunnel.

INTRODUCTION

A railway construction project for high speed trains travelling
faster than 300 km/h, the so-called KTX (Korea Train eXpress), has
been in progress since 1990 in Korea. The Seoul-Busan and Seoul-
Mokpo KTX lines have been the first to start services, in April 2004,
using newly constructed and partly modified existing railways. The
next stage is the construction of a new railway for KTX from Taegu
to Busan. The new railway is planned to run beneath the existing
railway in Busan City (the second largest city in Korea) along a
tunnel about 50 m deep and 5.7 km long. The main objective of
our project was to determine basic information that would assist in
designing the tunnel, by conducting geophysical surveys.

Figure 1(a) shows the planned route of the new railway, located
under the existing railway. Many structures such as houses,
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Fig. 1. a) Location map of the new KTX railway; (b) and (c¢) show
photographic views of the site.

apartments, buildings, roads and so on are located on both sides
of the existing railway (Figure 1(b) and Figure 1(c)). As one can
see, the high level of prevalent noise (vehicles, factory, and so on)
and the narrow space restrictions make the use of conventional
geophysical techniques like seismic refraction, reflection, and
resistivity inapplicable.

On the other hand, such conditions are well suited to the use
of the refraction microtremor (REMI) technique (Louie, 2001).
REMLI is a kind of microseismic survey (Aki, 1957; Okada, 2003)
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that uses the Rayleigh wave component of ambient noise (passive
sources) to obtain a shear-wave velocity profile. Therefore,
cultural noise including the vibrations from the trains and cars on
railways and roads, located parallel or perpendicular to the new
railway route, became useful rather than a hindrance.

In this paper, the relationship between shear-wave velocity and
RMR is studied, using laboratory tests and borehole logging. From
these results, it can be seen that shear-wave velocity and RMR are
closely related. A relationship between shear-wave velocity from
REMI and RMR is inferred. The RMR of the entire profile for the
planned underground tunnel is estimated from this relationship.

SITE DESCRIPTION

As mentioned above, the new railway will lie beneath the
existing railway located in Busan City. Figure 1(a) shows the route
of the new railway through the city. A geological cross-section
(A-B) in Figure 2 was made from old maps, satellite images, and
drilling logs. An alluvium layer that is 10-20 m thick overlies
the bedrock. The bedrock seems to be composed of different
kinds of granite (granite and felsite), and volcanic rocks (dacitic
tuff, andesitic tuff, and andesite) in some regions. The geological
conditions could be summarised as: granite or andesite bedrock,
with volcanic intrusions, under 10-20 m thick alluvium. There are
also several fault zones (the thick red lines in Figure 2).

THEORY AND METHOD

There are several methods that can provide shear-wave velocity
from microtremors (Aki, 1957; Louie, 2001; Okada, 2003). It is
impractical to use the circular or two-dimensional array (Okada,
2003; Roberts and Asten, 2004; Roberts and Asten, 2005; Hayashi
et al., 2004) in our case because the site is spatially restricted
(Figure 1(b) and Figure 1(c)). Therefore, we decided to apply the
REMI technique, which uses microtremors recorded with a linear
array (Louie, 2001). At this project site, abundant microtremors
were generated by vehicles on the roads parallel or perpendicular
to the route, and by the train on the existing railway that is parallel
to the route of the new railway.

Louie (2001) proposed the refraction microtremor method
that can provide shear-wave velocity to 100 metres depth, using
conventional refraction equipment and a linear geophone array
(Rucker et al., 2003; Pullammanappallil et al., 2003; Louie et al.,
2002). In the inversion procedure, a Rayleigh-wave dispersion
curve is picked in the wavefield-transformed domain, and the
subsurface shear-wave velocity profile can be determined by a
processing procedure similar to that used for the multi-channel
analysis of surface waves (MASW; Park et al., 1999).

REMI processing involves three steps: velocity spectral analysis,
Rayleigh wave phase-velocity dispersion picking, and shear-wave
velocity modelling.

Step 1: p-7 wansformation (the slant stack operation;
Thorson and Claerbout, 1985) of vertical particle velocity,
and transformation from p-7 to p-f domain by Fourier
transformation.

Step 2: Velocity spectral analysis and Rayleigh wave phase-
velocity dispersion picking. The lower limit of the apparent
phase velocities are assumed to be the true phase velocities
(Louie, 2001). This assumption in step 2 is the key point of the
REMI technique using a linear one-dimensional array.

Step 3: Shear velocity modelling. The REMI uses a
forward-modelling code adapted from Saito (1979, 1988) that
interactively matches the normal-mode dispersion data picked
in the p-f domain. The modelling algorithm iterates on phase
velocity at each frequency and can model velocity reversals
with depth.

We used a series of 110-metre refraction microtremor arrays
consisting of 12 vertical geophones with 4.5 Hz natural frequency,
and a seismic recorder with 24-bit resolution. We acquired 10-20
records each 15 seconds in length at each location, and used
SeisOpt® ReMi™ software package (°Optim LLC, 2004) for data
analysis. The shear-wave velocity profiles derived at each location
were then put together to create a two-dimensional shear-wave
velocity cross-section.

RESULTS

A relationship or correlation between shear-wave velocity and
rock mass rating (RMR) of the recovered core must be inferred,
for use in estimating RMR from shear-wave velocity. Rock Mass
Rating is a very important geotechnical factor that is used to
determine the design of supports in the underground tunnel. RMR
has values ranging from 0 to 100 and is based on five parameters
for classifying geomechanics, including rock strength, rock quality
designation (RQD), joint spacing, joint condition, and groundwater
conditions (Bieniawski, 1976).

First, we checked the relationship between shear-wave velocity
and uniaxial compressive rock strength in laboratory tests. Then,
we deduced the relationship between shear-wave velocity from
Suspension-PS (SPS) logging and the RMR in the same borehole.
The relationship between shear-wave velocity and RMR from
laboratory tests and between shear-wave velocity from SPS
logging and RMR would allow us to use the shear-wave velocity to
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Fig. 2. A geological cross-section (A-B in Figure 1(a)) along the planned railway tunnel line.
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estimate RMR. Finally, we applied the relationship between shear-
wave velocity from REMI and RMR to get estimate RMR along
the entire profile, including regions of interest.

Shear velocity versus uniaxial compressive strength
- Laboratory test

In order to use shear-wave velocity for RMR estimation, we
must know whether shear-wave velocity and RMR are related. It
is difficult to compare shear-wave velocity directly with RMR,
because RMR is a value applicable to some region of core
recovered, and is composed of several factors, while the shear
velocity is closely related to porosity, rock properties, pore fluids
and other rock parameters. However, we simply compared shear-
wave velocity measured in a laboratory test of a rock specimen
with the measured uniaxial strength that is a component of
RMR for the same specimen. Figure 3 shows plots of uniaxial
compressive strength versus P and S-wave velocity. It is difficult to
infer a relation between velocity and strength because of the small
number of samples, but Figure 3 shows that velocity and strength
are positively correlated. From these results, it can be deduced that
shear velocity and rock strength are closely related.

Shear velocity from SPS logging versus RMR

SPS logging data were available at five boreholes, and we
compared the RMR at each borehole with P-wave and S-wave
velocity from SPS logging. Figure 4 shows the linear relationships
between them. We can deduce that RMR and shear-wave velocity

are well correlated, and that RMR between boreholes can be
estimated from shear-wave velocity.

Shear velocity from REMI versus RMR

REMI data was collected with a series of 110-metre-long arrays
with 10-metre spacing between 4.5 Hz geophones. An example is
shown in Figure 5(a). After acquiring each set of REMI data, the
array was moved up 40 metres, so that each REMI array has a 70-
metre zone of overlap with both the previous and the next array.
This overlap between arrays may degrade the lateral resolution of
shear-wave velocity structure and cause the lateral averaging of
shear-wave velocity structure.

A shear-wave velocity profile was derived for each array and an
example is shown in Figure 5(d). This velocity profile represents
the shear velocity at the midpoint of an array. 134 velocity profiles
were obtained along the entire railway tunnel route. Most profiles
were obtained with linear arrays that were parallel to the route,
but some tens of profiles were obtained using a linear array
perpendicular to the route, because of obstacles, such as cross
roads, to laying out an array in the parallel direction.

Figure 5(a) shows a raw 15-second record for REMI analysis.
Figure 5(b) shows the Rayleigh wave spectrum obtained by a
p-f transformation of the wavefield. From the spectrum, we pick
the Rayleigh wave dispersion curve (the dots in Figure 5(b)). As
mentioned earlier, the picked points are the lower limit of phase
velocity of meaningful Rayleigh waves. A shear-wave depth
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profile is then derived from the picked dispersion curve by iterative
simulation (Figure 5(d)). Figure 5(c) shows the fit between the
dispersion picks and the calculated dispersion curve generated
by the final shear-wave velocity profile. Figure 5(d) shows the
shear-wave velocity from this method, compared with SPS logging
results at the same position. There is some difference between
them. This is due to the different frequency bands of the two
methods, the uncertainty of the dispersion picks, lateral averaging
of velocities by the long array, and array overlap. It is well-known
that P-wave velocities from laboratory tests on saturated core
using an ultrasonic source are much faster than P-wave velocities
from seismic refraction or crosshole tomography surveys using
dynamite or sledge hammer sources; Batzle et al. (2001) shows
the frequency dependence of velocity using ultrasonic techniques.
In our case, SPS logging uses a source of several hundreds to
thousands of Hertz, but REMI uses signals of less than 20 Hz. It

can be inferred that these differences in frequency between SPS
logging and REMI are the cause of the difference in shear-wave
velocity between the two methods, by analogy with the difference
in P-wave velocities between laboratory tests and surface seismic
methods.

Figure 6 shows the shear-wave velocity section of the whole
area, obtained by putting together the individual shear-wave profiles
derived using the REMI technique. Remarkable consistency is
noticeable between the geometry of layers (alluvium, highly
weathered rock, and moderately weathered rock) observed from
drilling logs and the shear-wave velocity section derived from
REMI method. The trend of the velocity curves is very similar.
This agreement between the two methods means that the shear-
wave velocity profile from REMI is a good representation of the
actual shear-wave velocity structure.
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Fig. 6. The shear-wave velocity section determined from microtremor analysis, overlaid with borehole logs.
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Figure 7 shows a crossplot of RMR values from the core
recovered, and shear-wave velocity from REMI at the same
location. We can infer a linear relationship between them, as we
do in the case of SPS logging (Figure 4(b)).

Using a simple regression analysis, we can derive a linear
relationship:

RMR =0.036 X Vs — 10 §))

Table 1 shows the shear-wave velocities that are the criteria for
determining RMR using equation (1). Figure 8 shows the RMR
cross-section for the new tunnel determined in this way. From this
rock classification, the construction details could be decided and
the cost for constructing the tunnel could be estimated.

CONCLUSIONS

In order to circumvent the unfavourable conditions for
conventional geophysical surveys in the proposed tunnel area,
a refraction microtremor technique using a linear array (REMI)
has been applied. To generate quantitative information such as
Rock Mass Rating (RMR), statistical relationships were derived
by inspection of the RMR values of the cores recovered and the
shear-wave velocities from both laboratory tests and SPS logging.
The correlations between shear velocity from SPS logging and
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Table 1. The criteria for determining RMR from shear-wave velocity
derived from REMI.

RMR or compressive strength were found to be good. Therefore,
a relationship between shear velocity from REMI and RMR was
inferred and it then became possible to estimate the RMR of the
total zone of interest for the design of the proposed tunnel.
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