Application of linear-array microtremor surveys for rock mass classification in urban tunnel design

도심지 터널 암반분류를 위한 선형배열 상시진동 탄성파 탐사 적용

  • Published : 2006.02.28

Abstract

Urban conditions, such as existing underground facilities and ambient noise due to cultural activity, restrict the general application of conventional geophysical techniques. At a tunnelling site in an urban area along an existing railroad, we used the refraction microtremor (REMI) technique (Louie, 2001) as an alternative way to get geotechnical information. The REMI method uses ambient noise recorded by standard refraction equipment and a linear geophone array to derive a shear-wave velocity profile. In the inversion procedure, the Rayleigh wave dispersion curve is picked from a wavefield transformation, and iteratively modelled to get the S-wave velocity structure. The REMI survey was carried out along the line of the planned railway tunnel. At this site vibrations from trains and cars provided strong seismic sources that allowed REMI to be very effective. The objective of the survey was to evaluate the rock mass rating (RMR), using shear-wave velocity information from REMI. First, the relation between uniaxial compressive strength, which is a component of the RMR, and shear-wave velocity from laboratory tests was studied to learn whether shear-wave velocity and RMR are closely related. Then Suspension PS (SPS) logging was performed in selected boreholes along the profile, in order to draw out the quantitative relation between the shear-wave velocity from SPS logging and the RMR determined from inspection of core from the same boreholes. In these tests, shear-wave velocity showed fairly good correlation with RMR. A good relation between shear-wave velocity from REMI and RMR could be obtained, so it is possible to estimate the RMR of the entire profile for use in design of the underground tunnel.

일반적인 물리탐사기법은 도심지 내에서 구조물, 전도성 지하매설물, 차량 등 인공 잡음으로 인하여 그 적용성에 많은 제약을 받는다. 특히 이 과업은 철도가 운행 중인 철로 하부의 지반 정보의 획득을 목적으로 하는데, 이를 위한 일반적인 물리탐사 적용이 어려웠으며 그 대안으로 선형배열 상시진동 탄성파탐사를 적용하였다. 상시진동 탐사(mircotremor survey)기법에는 철로를 운행하는 기차와 주변 도로의 차량에 의한 진동이 오히려 양호한 송신원으로 활용 될 수 있다. 선형배열 상시진동 탐사기법에서는 일반적인 굴절법 장비를 이용하여 일상적인 진동을 기록하고, 파동장의 변환을 수행하여 표면파의 분산곡선을 얻는다. 이후 발췌한 분산곡선에 대한 반복적인 수치모델링을 통하여 전단파 속도를 구한다. 이 과업에서는 기존 철로를 따라 하부의 터널심도까지의 전단파 속도를 전체 터널구간에 대하여 얻기 위하여 40 m 간격으로 선형배열을 이동하면서 자료를 획득하였다. 측선상의 시추를 통하여 회수한 코어를 이용한 실내시험을 통한 RMR 의 구성요소 중 하나인 일축압축강도와 전단파 속도와의 높은 상관관계를 확인하여 RMR이 전단파 속도와 연관성이 있음을 유추할 수 있었다. 시추공에서 수행한 SPS 검층에서 획득한 전단파 속도와 RMR의 비교한 결과 전단파 속도와 RMR이 높은 상관관계에 있음을 확인할 수 있었다. 상시진동 탐사기법을 통하여 획득한 전단파 속도 역시 RMR과의 양호한 상관관계를 나타냄을 알 수 있었다. 이러한 상관관계를 이용하여 도심지 철도터널 전체 구간에서 터널 설계시 필수적인 암반분류를 위한 RMR 추정이 가능하였다.

Keywords

References

  1. AId, L., 1957, Space and time spectra of stationary stochastic waves, with special reference to microtremors: Bulletin of the Earthquake Research Institute, 35, 415-456
  2. Bieniawski, Z.T., 1976, Rock mass classification in rock engineering applications: Proceedings of a Symposium on Exploration for Rock Engineering, Balkema, 12,97-106
  3. Batzle, M., Hofmann, R.B., Han, D.-H., and Castagna, J., 2001, Fluid and frequency dependent seismic velocity of rocks: The Leading Edge, 20,168-171 https://doi.org/10.1190/1.1438900
  4. Hayashi, K., Inazaki, T., and Suzuki, H., 2004, Buried channel delineation using a passive surface wave method: Proceeding of the 7'h SEGJ International Symposium, 395-400
  5. Louie, J. N., 2001, Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays: Bulletin of the Seismological Society of America, 91,347-364 https://doi.org/10.1785/0120000098
  6. Louie, J.N., Abbott, R.E., and Pullammanappallil, S., 2002, Refraction microtremor and optimization methods as alternatives to boreholes for site strength and earthquake hazard assessments: Proceedings of 15th Annual Symposium on the Application of Geophysics to Environmental and Engineering Problems (SAGEEP '02), Environmental & Engineering Geophysical Society, 12GAP8
  7. Okada, H., 2003, The microtremor survey method: Society of Exploration Geophysicists
  8. Park, C.B., Miller, R.D., and Xia, J., 1999, Multi-channel analysis of surface waves: Geophysics, 64, 800-808 https://doi.org/10.1190/1.1444590
  9. Pullammanappallil, S., Honjas, B., and Louie J., 2003, Determination of 1-0 shear wave velocities using the refraction microtremor method: Proceedings of the third international conference on the application of geophysical methodologies and NDT to transportation and infrastructure
  10. Roberts, J., and Asten, M., 2004, Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method: Exploration Geophysics, 35, 14-18 https://doi.org/10.1071/EG04014
  11. Roberts, J., and Asten, M., 2005, Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements: Exploration Geophysics, 35,34-40
  12. Rucker, M.L., 2003, Applying the refraction microtremor (ReMi) shear wave technique to geotechnical characterization: Proceedings of the third international conference on the application of geophysical methodologies and NDT to transportation and infrastructure
  13. Saito, M., 1979, Computations of reflectivity and surface wave dispersion curves for layered media; I, Sound wave and SH wave: Butsuri- Tanka, 32, 5-26
  14. Saito, M., 1988, Compound matrix method for the calculation of spheroidal oscillation of the Earth: Seismological Research Letters, 59, 29
  15. Thorson, J.R., and Claerbout, J.F., 1985, Velocity-stack and slant-stack stochastic inversion: Geophysics, 50, 2727-2741 https://doi.org/10.1190/1.1441893