• Title/Summary/Keyword: Effective biocontrol formulation

Search Result 19, Processing Time 0.03 seconds

Mannitol Amendment as a Carbon Source in a Bean-based Formulation Enhances Biocontrol Efficacy of a 2,4-diacetylphloroglucinol-producing Pseudomonas sp. NJ134 Against Tomato Fusarium Wilt

  • Kang, Beom-Ryong
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.390-395
    • /
    • 2011
  • Fusarium wilt caused by Fusarium oxysporum has become a serious problem world-wide and relies heavily on chemical fungicides. We selected Pseudomonas sp. NJ134 to develop an effective biocontrol strategy. This strain shows strong antagonistic activity against F. oxysporum. Biochemical analyses of ethyl-acetate extracts of NJ134 culture filtrates showed that 2,4-diacetylphloroglucinol (DAPG) was the major compound inhibiting in vitro growth of F. oxysporum. DAPG production was greatly enhanced in the NJ134 strain by adding mannitol to the growth media, and in vitro antagonistic activity against F. oxysporum increased. Bioformulations developed from growth of NJ134 in sterile bean media with mannitol as the carbon source under plastic bags resulted in effective biocontrol efficacy against Fusarium wilt. The efficacy of the bioformulated product depended on the carbon source and dose. Mannitol amendment in the bean-based formulation showed strong effective biocontrol against tomato Fusarium wilt through increased DAPG levels and a higher cell density compared to that in a glucose-amended formulation. These results suggest that this bioformulated product could be a new effective biocontrol system to control Fusarium wilt in the field.

Draft Genome Sequence of a Chitinase-producing Biocontrol Bacterium Serratia sp. C-1

  • Park, Seur Kee;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.222-226
    • /
    • 2015
  • The chitinase-producing bacterial strain C-1 is one of the key chitinase-producing biocontrol agents used for effective bioformulations for biological control. These bioformulations are mixed cultures of various chitinolytic bacteria. However, the precise identification, biocontrol activity, and the underlying mechanisms of the strain C-1 have not been investigated so far. Therefore, we evaluated in planta biocontrol efficacies of C-1 and determined the draft genome sequence of the strain in this study. The bacterial C-1 strain was identified as a novel Serratia sp. by a phylogenic analysis of its 16S rRNA sequence. The Serratia sp. C-1 bacterial cultures showed strong in planta biocontrol efficacies against some major phytopathogenic fungal diseases. The draft genome sequence of Serratia sp. C-1 indicated that the C-1 strain is a novel strain harboring a subset of genes that may be involved in its biocontrol activities.

Bacillus subtilis S1-0210 as a Biocontrol Agent against Botrytis cinerea in Strawberries

  • Hang, Nguyen Thi Thu;Oh, Soon-Ok;Kim, Gyoung-Hee;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-63
    • /
    • 2005
  • Bacillus subtilis S1-0210 was selected as a biological agent against Botrytis cinerea in strawberry. The isolate inhibited mycelial growth of B. cinerea in vitro tests. A wettable powder formulation of B. subtilis S1-0210 significantly reduced infection rates with lower than 5%, compared with higher than 70% of infection rates in untreated control. The formulation showed 85 to 89% control efficacies of gray mold incidences on fruits of strawberry in pots. Pre-treatment of the agent was more effective in controlling gray mold on fruits and leaves than post-treatment at the early stage of disease development. The formulation also showed 70% control efficacy of gray mold incidence on fruits of strawberry in a field trial. The results indicate that B. subtilis S1-0210 in the wettable powder formulation may be a potential biocontrol agent to control gray mold on strawberry.

Paenibacillus elgii SD17 as a Biocontrol Agent Against Soil-borne Turf Diseases

  • Kim, Dal-Soo;Rae, Cheol-Yong;Chun, Sam-Jae;Kim, Do-Hyung;Choi, Sung-Won;Choi, Kee-Hyun
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.328-333
    • /
    • 2005
  • Paenibacillus elgii SD17 (KCTC $10016BP^T$=NBRC $100335^T$) was recently reported as a new species. Based on its inhibitory activity to Thanatephorus cucumeris AG1-1, strain SD17 was further evaluated for its potential as a biocontrol agent against soil-borne diseases of turf grasses in Korea. P. elgii SD17 showed a broad spectrum of antimicrobial activity in vitro test and suppressed development of turf grass diseases; Pythium blight caused by Pythium aphanidermatum and brown patch caused by T. cucumeris AG1-1 on creeping bentgrass (Agrostis palustris) in the growth chamber tests. Under a condition for massive culture in a 5,000 L fermenter, P. elgii SD17 reached $6.4{\times}10^8$ spores/ml that resulted in approximately $1.0{\times}10^7$ cfu/g when formulated into a granule formulation (GR) using the whole culture broth instead of water. Using the GR formulation, biocontrol activity of P. elgii SD17 was confirmed. In the growth chamber tests, the GR formulation was effective against brown patch and Pythium blight with similar level of disease severity compared to each of the standard fungicides at the application rates of 10 g/$m^2$ or above. In the field tests, compared to each untreated control, the GR formulation also effectively controlled Pythium blight, brown patch and large patch at all the application rates of 5, 10 and 20 g/$m^2$, respectively, without significant response by the application rates. However its performance was inferior to each of the standard chemical fungicides. Based on these results, we consider this GR formulation of P. elgii SD17 as an effective biocontol agent to suppress Pythium blight, brown patch and large patch of turf grasses in Korea.

Development of the stable liquid formulation of Burkholderia cepacia YC5025, a biocontrol agent for cucumber anthracnose

  • Chung, Eu-Jeen;Chung, Young-Ryun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.97.2-98
    • /
    • 2003
  • A new and effective formulation using antagonistic bacteria, Burkholderia cepacia YC5025 in vegetable oil was developed for the biocontrol of anthracnose. The bacterial population in the formulation was maintained to 5x10/sup7/ cfu/ml upto 60 days at room temperature. Control efficacy of the formulation for anthracnose was over 80% by spraying of diluted suspension(x1,000) in growth chamber tests. On the contrary, the bacterial suspension in distilled water or bacterial culture broth containing same number of spores as the formulation had low control efficacy around 40% even 2-weeks storage after preparation. The shelf-life of the formulation was longer than that of bacterial preparation using clay minerals such as talc or bentonite. The mechanisms of newly developed bacterial formulation are possibly the formation of water film on the surface of cucumber leaves and inactivation of the bacteria in the vegetable oils during storage. Further field tests and improvements with new liquid bacteiral formulation need to be done for practical application.

  • PDF

Climate change and resilience of biocontrol agents for mycotoxin control

  • Magan, Naresh;Medina, Angel
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.41-41
    • /
    • 2018
  • There has been an impetus in the development of biocontrol agents (BCAs) with the removal of a number of chemical compounds in the market, especially in the European Union. This has been a major driver in the development of Integrated Pest Management systems (IPM) for both pest and disease control. For control of mycotoxigenic fungi, there is interest in both control of colonization and more importantly toxin contamination of staple food commodities. Thus the relative inoculum potential of biocontrol agent vs the toxigenic specie sis important. The major bottlenecks in the production and development of formulations of biocontrol agents are the resilience of the strains, inoculum quality and formulation with effective field efficacy. It was recently been shown for mycotoxigenic fungi such as Aspergillus flavus, under extreme climate change conditions, growth is not affected although there may be a stimulation of aflatoxin production. Thus, the development of resilient biocontrol strains which can may have conserved control efficacy but have the necessary resilience becomes critical form a food security point of view. Indeed, under predicted climate change scenarios the diversity of pests and fungal diseases are expected to have profound impacts on food security. Thus, when examining the identification of potential biocontrol strains, production and formulation it is critical that the resilience to CC environmental factors are included and quantified. The problems in relation to the physiological competence and the relative humidity range over which efficacy can occur, especially pre-harvest may be increase under climate change conditions. We have examined the efficacy of atoxigenic strains of A. flavus and Clanostachys rosea and other candidates for control of A. flavus and aflatoxin contamination of maize, and for Fusarium verticillioides and fumonisin toxin control. We have also examined the potential use of fluidized-bed drying, nanoparticles/nanospheres and encapsulation approaches to enhance the potential for the production of resilient biocontrol formulations. The objective being the delivery of biocontrol efficacy under extreme interacting climatic conditions. The potential impact of climate change factors on the efficacy of biocontrol of fungal diseases and mycotoxins are discussed.

  • PDF

An Effective and Practical Strategy for Biocontrol of Plant Diseases Using On-Site Mass Cultivation of Chitin-Degrading Bacteria (키틴분해세균의 현장 대량 배양방법을 이용한 효과적인 식물병의 생물적 방제 전략)

  • Kim, Young-Cheol;Kang, Beom Ryong;Kim, Yong Hwan;Park, Seur Kee
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.19-34
    • /
    • 2017
  • Recent worldwide demand for organic and sustainable agriculture products is driving the development of formulations of biopesticides effective in the field. Biopesticides have the benefit of environmentally-friendly qualities. However, biocontrol approaches largely have been ineffective in controlling plant pests in field conditions. Previously, we developed a cost-effective biocontrol formulation containing chitin and chitinase-producing biocontrol bacteria with field efficacy. This formulated product has successfully suppressed various plant diseases in the field conditions. In this review, we focus on ecological aspects and the potential mechanisms underpinning the success of chitinase-producing bacteria. In addition, we discuss the possibility on-site cultivation of the formulated products to further strengthen the approach as being farmer friendly and successful.

Bacterial Sporulation and germination of Biocontrol agent Bacilus subtilis YBL-7 (항진균성 길항세균 Bacillus subtilis YBL-7의 종자피막용 포자체의 생산과 발아조건)

  • 장종원;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.236-242
    • /
    • 1995
  • Biological control of soilborne plant pathogens by the addition of antagonistic microorganisms to the soil may offer a practical supplement or alternative to existing disease management strategies that depend heavily on chemical pesticides. Soil amendment with antagonistic microbes was non-effective because of high cost, low efficacy, and inconvenient usage on the treatment course. Therefore, seed coating formulation for the application of biological seed treatments has been being to apply successful disease suppression for many important crops. The objectives of this study were to investigate the optimal condition for the spore production of biocontrol agent Bacillus subtilis YBL-7 and the liquid coating formulation that contained a suspension of a proper aqueous binder, as well as a ground fine solid particulate material. The maximum yield has been obtained from 60 hrs-old culture at 30$\circ$C in spore forming (SF) medium containing 0.8% nutrient broth, 0.05% yeast extract, 10$^{-1}$ M MgCl$^{2}$, 10$^{-4}$ M MnCl$^{2}$, 10$^{-5}$ M dipicolinic acid, and pH 6.5. The optimal condition of dried spore preparation was achieved when cells of B. subtilis YBL-7 was heat-dried with 50$\circ$C for 2 hrs.

  • PDF

Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

  • Nam, Hyo Song;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.34 no.3
    • /
    • pp.241-249
    • /
    • 2018
  • Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above $1{\times}10^8$ colony forming units/g after storage of the powder at $25^{\circ}C$ for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

Evaluation of the Biocontrol Potential of Some Medicinal Plant Materials Alone and in Combination with Trichoderma harzianum Against Rhizoctonia solani AG 2-1

  • Lee, Hye-Min;Khan, Zakaullah;Kim, Sang-Gyu;Baek, Nam-In;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.68-77
    • /
    • 2011
  • Fifty five species of medicinal plant materials were tested for their antifungal activity in vitro against Rhizoctonia solani AG 2-1 and Trichoderma harzianum to select plant species that can be used to improve the biocontrol efficacy of T. harzianum. Six species were effective against R. solani AG 2-1 but were also antagonistic to T. harzianum, except for Cinnamomum loureirii stem bark (CSB). CSB inhibited mycelial growth of R. solani AG 2-1 by 73.7% but showed an inhibitory effect on mycelial growth of T. harzianum by only 2.2%. Scanning electron microscophs showed that the CSB treatment resulted in deformed R. solani AG 2-1 hyphal cells, and transmission electron microscophs revealed degenerated cell structures such as degenerated cytoplasm and disentangled cell wall and the accumulation of electron-dense inclusions (asterisks) in the CSB treatment. The biocontrol efficacy of radish damping-off increased greatly following the combined treatments of T. harzianum and CSB and the combined treatment increased efficacy from 6.4-23.1% to 37.1-87.3% compared with either treatment alone. CSB did not affect T. harzianum population growth, as it was almost the same in rice-bran peat medium (culture) amended with 0.1% and 1.0% CSB powder as in non-amended medium. The formulation of T. harzianum in rice-bran peat medium amended with CSB powder reduced the severity of radish damping-off by 80.6%, suggesting that T. harzianum and CSB can be formulated as a biocontrol product for the control of R. solani AG 2-1.