Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.1.19

An Effective and Practical Strategy for Biocontrol of Plant Diseases Using On-Site Mass Cultivation of Chitin-Degrading Bacteria  

Kim, Young-Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kang, Beom Ryong (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Kim, Yong Hwan (Department of Crop Science and Biotechnology, Dankook University)
Park, Seur Kee (Department of Plant Medicine, Sunchon National University)
Publication Information
Research in Plant Disease / v.23, no.1, 2017 , pp. 19-34 More about this Journal
Abstract
Recent worldwide demand for organic and sustainable agriculture products is driving the development of formulations of biopesticides effective in the field. Biopesticides have the benefit of environmentally-friendly qualities. However, biocontrol approaches largely have been ineffective in controlling plant pests in field conditions. Previously, we developed a cost-effective biocontrol formulation containing chitin and chitinase-producing biocontrol bacteria with field efficacy. This formulated product has successfully suppressed various plant diseases in the field conditions. In this review, we focus on ecological aspects and the potential mechanisms underpinning the success of chitinase-producing bacteria. In addition, we discuss the possibility on-site cultivation of the formulated products to further strengthen the approach as being farmer friendly and successful.
Keywords
Biocontrol; Biopesticide; Chitinase; Chitin-based bioformulated product;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Rettori, D. and Duran, N. 1998. Production, extraction and purificationof violacein: an antibiotic pigment produced by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 14: 685-688.   DOI
2 Reyes-Ramirez, A., Escudero-Abarca, B. I., Aguilar-Uscanga, G., Hayward-Jones, P. M. and Barboza-Corona, J. E. 2004. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J. Food Sci. 69: M131-M134.
3 Rodriguez-Kabana, R. 1986. Organic and inorganic nitrogen amendments to soil as nematode suppressants. J. Nematol. 18: 129-134.
4 Rodriguez-Kabana, R., Morgan-Jones, G. and Gintis, B. O. 1984. Effects of chitin amendments to soil on Heterodera glycines, microbial populations, and colonization of cysts by fungi. Nematropica 14: 10-25.
5 Sarathchandra, S. U., Watson, R. N., Cox, N. R., di Menna, M. E., Brown, J. A., Burch, G. and Neville, F. J. 1996. Effects of chitin amendment of soil on microorganisms, nematodes, and growth of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.). Biol. Fert. Soils 22: 221-226.   DOI
6 Matilla, M. A., Nogellova, V., Morel, B., Krell, T. and Salmond, G. P. 2016b. Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid, in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX. Environ. Microbiol. 18: 3635-3650.   DOI
7 Mian, I. H., Godoy, G., Shelby, R. A., Rodriguez-Kabana, R. and Morgan-Jones, G. 1982. Chitin amendments for control of Meloidogyne arenaria in infested soil. Nematropica 12: 71-84.
8 Michaels, R. and Corpe, W. A. 1965. Cyanide formation by Chromobacterium violaceum. J. Bacteriol. 89: 106-112.
9 Subbanna, A. R. N. S., Khan, M. S. and Shivashankara, H. 2016. Characterization of antifungal Paenibacillus illinoisensis strain UKCH21 and its chitinolytic properties. Afr. J. Microbiol. Res. 10: 1380-1387.   DOI
10 Sullivan, R. F., Holtman, M. A., Zylstra, G. J., White, J. F. and Kobayashi, D. Y. 2003. Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypic characteristics. J. Appl. Microbiol. 94: 1079-1086.   DOI
11 Tian, B., Yang, J., Lian, L., Wang, C., Li, N. and Zhang, K. Q. 2007a. Role of an extracellular neutral protease in infection against nematodes by Brevibacillus laterosporus strain G4. Appl. Microbiol. Biotechnol. 74: 372-380.   DOI
12 Jankiewicz, U. and Brzezinska, M. S. 2015. Purification, characteristics and identification of chitinases synthesized by the bacterium Serratia plymuthica MP44 antagonistic against phytopathogenic fungi. Appl. Biochem. Microbiol. 51: 560-565.   DOI
13 Bell, A. A., Hubbard, J. C., Liu, L., Davis, R. M. and Subbarao, K. V. 1998. Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery. Plant Dis. 82: 322-328.   DOI
14 Tian, B., Yang, J. and Zhang, K. Q. 2007b. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol. Ecol. 61: 197-213.   DOI
15 Ueda, H., Nakajima, H., Hori, Y., Goto, T. and Okuhara, M. 1994. Action of FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum no. 968, on Ha-ras transformed NIH3T3 cells. Biosci. Biotechnol. Biochem. 58: 1579-1583.   DOI
16 Vaidya, R. J., Shah, I. M., Vyas, P. R. and Chhatpar, H. S. 2001. Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J. Microbiol. Biotechnol. 17: 691-696.   DOI
17 Wang, K., Yan, P. S., Cao, L. X., Ding, Q. L., Shao, C. and Zhao, T. F. 2013. Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin. BioMed Res. Int. 2013: 397142.
18 Jeong, M. H., Yang, S. Y., Lee, Y. S., Ahn, Y. S., Park, Y. S., Han, H. R. and Kim, K. Y. 2015. Selection and characterization of Bacillus licheniformis MH48 for the biocontrol of pine wood nematode (Bursaphelenchus xylophilus). J. Korean For. Soc. 104: 512-518. (In Korean)   DOI
19 Jochum, C. C., Osborne, L. E. and Yuen, G. 2006. Fusarium head blight biological control with Lysobacter enzymogenes strain C3. Biol. Control 39: 336-344.   DOI
20 Benhamou, N., Gagne, S., Le Quere, D. and Dehbi, L. 2000. Bacterial-mediated induced resistance in cucumber: beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology 90: 45-56.   DOI
21 Bottjer, K. P., Bone, L. W. and Gill, S. S. 1985. Nematoda: susceptibility of the egg to Bacillus thuringiensis toxins. Exp. Parasitol. 60: 239-244.   DOI
22 Brazilian National Genome Project Consortium. 2003. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. U. S. A. 100: 11660-11665.   DOI
23 Brzezinska, M. S., Jankiewicz, U., Burkowska, A. and Walczak, M. 2014. Chitinolytic microorganisms and their possible application in environmental protection. Curr. Microbiol. 68: 71-81.   DOI
24 Chen, J., Moore, W. H., Yuen, G. Y., Kobayashi, D. and Caswell-Chen, E. P. 2006. Influence of Lysobacter enzymogenes strain C3 on nematodes. J. Nematol. 38: 233-239.
25 Chernin, L. S., Winson, M. K., Thompson, J. M., Haran, S., Bycroft, B. W., Chet, I., Williams, P. and Stewart, G. S. 1998. Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J. Bacteriol. 180: 4435-4441.
26 Chernov, T. I., Zhelezova, A. D., Manucharova, N. A. and Zvyagintsev, D. G. 2013. Monitoring of the chitinolytic microbial complex of the phylloplane. Biol. Bull. 40: 527-532.   DOI
27 Muymas, P., Pichyangkura, R., Wiriyakitnateekul, W., Wangsomboondee, T., Chadchawan, S. and Seraypheap, K. 2015. Effects of chitin-rich residues on growth and postharvest quality of lettuce. Biol. Agric. Hortic. 31: 108-117.   DOI
28 Jung, W. J., Jung, S. J., An, K. N., Jin, Y. L., Park, R. D., Kim, K. Y., Shon, B. K. and Kim, T. H. 2002. Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J. Microbiol. Biotechnol. 12: 865-871.
29 Kalbe, C., Marten, P. and Berg, G. 1996. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol. Res. 151: 433-439.   DOI
30 Muller, H., Westendorf, C., Leitner, E., Chernin, L., Riedel, K., Schmidt, S., Eberl, L. and Berg, G. 2009. Quorum-sensing effects in the antagonistic rhizosphere bacterium Serratia plymuthica HRO-C48. FEMS Microbiol. Ecol. 67: 468-478.   DOI
31 Nagpure, A., Choudhary, B. and Gupta, R. K. 2014. Chitinases: in agriculture and human healthcare. Crit. Rev. Biotechnol. 34: 215-232.   DOI
32 Narasimhan, A. and Shivakumar, S. 2012. Optimization of chitinase produced by a biocontrol strain of Bacillus subtilis using Plackett-Burman design. Eur. J. Exp. Biol. 2: 861-865.
33 Nguyen, X. H., Naing, K. W., Lee, Y. S., Jung, W. J., Anees, M. and Kim, K. Y. 2013. Antagonistic potential of Paenibacillus elgii HOA73 against the root-knot nematode, Meloidogyne incognita. Nematology 15: 991-1000.   DOI
34 Niu, Q., Huang, X., Zhang, L., Li, Y., Li, J., Yang, J. and Zhang, K. 2006. A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Arch. Microbiol. 185: 439-448.   DOI
35 Otsu, Y., Matsuda, Y., Shimizu, H., Ueki, H., Mori, H., Fujiwara, K., Nakajima, T., Miwa, A., Nonomura, T., Sakuratani, Y., Tosa, Y., Mayama, S. and Toyoda, H. 2003. Biological control of phytophagous ladybird beetles Epilachna vigintioctopunctata (Col., Coccinellidae) by chitinolytic phylloplane bacteria Alcaligenes paradoxus entrapped in alginate beads. J. Appl. Entomol. 127: 441-446.   DOI
36 Ahmed, A. S., Ezziyyani, M., Sanchez, C. P. and Candela, M. E. 2003. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur. J. Plant Pathol. 109: 633-637.   DOI
37 Westerdahl, B. B., Carlson, H. L., Grant, J., Radewald, J. D., Welch, N., Anderson, C. A., Darso, J., Kirby, D. and Shibuya, F. 1992. Management of plant-parasitic nematodes with a chitin-urea soil amendment and other materials. J. Nematol. 24: 669-680.
38 Wiwat, C., Thaithanun, S., Pantuwatana, S. and Bhumiratana, A. 2000. Toxicity of chitinase-producing Bacillus thuringiensis ssp. kurstaki HD-1 (G) toward Plutella xylostella. J. Invertebr. Pathol. 76: 270-277.   DOI
39 Pal, K. K. and Gardener, B. M. 2006. Biological control of plant pathogens. Plant Health Instr. 2: 1117-1142.
40 Aggarwal, C., Paul, S., Tripathi, V., Paul, B. and Khan, M. A. 2015. Chitinase producing Serratia marcescens for biocontrol of Spodoptera litura (Fab) and studies on its chitinolytic activities. Ann. Agric. Res. 36: 132-137.
41 Akocak, P. B., Churey, J. J. and Worobo, R. W. 2015. Antagonistic effect of chitinolytic Pseudomonas and Bacillus on growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Biosci. 10: 48-58.   DOI
42 Sharp, R. G. 2013. A review of the applications of chitin and its derivatives in agriculture to modify plant-microbial interactions and improve crop yields. Agronomy 3: 757-793.   DOI
43 Hammami, I., Siala, R., Jridi, M., Ktari, N., Nasri, M. and Triki, M. A. 2013. Partial purification and characterization of chiIO8, a novel antifungal chitinase produced by Bacillus cereus IO8. J. Appl. Microbiol. 115: 358-366.   DOI
44 Han, T., Cho, M. Y., Lee, Y. S., Park, Y. S., Park, R. D., Nam, Y. and Kim, K. Y. 2010. Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and neem oil. Korean J. Soil Sci. Fert. 43: 490-497.
45 Sato, I., Yoshida, S., Iwamoto, Y., Aino, M., Hyakumachi, M., Shimizu, M., Takahashi, H., Ando, S. and Tsushima, S. 2014. Suppressive potential of Paenibacillus strains isolated from the tomato phyllosphere against Fusarium crown and root rot of tomato. Microbes Environ. 29: 168-177.   DOI
46 Seo, C. C., Jung, H. C. and Park, S. K. 2007. Control of powdery mildew of pepper using culture solutions of chitinolytic bacteria, Chromobacterium sp. and Lysobacter enzymogenes. Res. Plant Dis. 13: 40-44. (In Korean)   DOI
47 Shanmugam, V., Thakur, H. and Gupta, S. 2013. Use of chitinolytic Bacillus atrophaeus strain S2BC-2 antagonistic to Fusarium spp. for control of rhizome rot of ginger. Ann. Microbiol. 63: 989-996.   DOI
48 Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59: 223-233.   DOI
49 Singh, A. K., Singh, A. and Joshi, P. 2016. Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. Int. J. Pest Manag. 62: 222-227.   DOI
50 Kim, I. S., Yang, S. Y., Park, S. K. and Kim, Y. C. 2017. Quorum sensing is a key regulator for the antifungal and biocontrol activity of chitinase-producing Chromobacterium sp. C61. Mol. Plant Pathol. 18: 134-140.   DOI
51 Kim, Y. C., Jung, H., Kim, K. Y. and Park, S. K. 2008. An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur. J. Plant Pathol. 120: 373-382.   DOI
52 Barreto, E. S., Torres, A. R., Barreto, M. R., Vasconcelos, A. T., Astolfi-Filho, S. and Hungria, M. 2008. Diversity in antifungal activity of strains of Chromobacterium violaceum from the Brazilian Amazon. J. Ind. Microbiol. Biotechnol. 35: 783-790.   DOI
53 Akutsu, K., Hirata, A., Yamamoto, M., Hirayae, K., Okuyama, S. and Hibi, T. 1993. Growth inhibition of Botrytis spp. by Serratia marcescens B2 isolated from tomato phylloplane. Ann. Phytopathol. Soc. Jpn. 59: 18-25.   DOI
54 Azizah, S. N., Mubarik, N. R. and Sudirman, L. I. 2015. Potential of chitinolytic Bacillus amyloliquefaciens SAHA 12.07 and Serratia marcescens KAHN 15.12 as biocontrol agents of Ganoderma boninense. Res. J. Microbiol. 10: 452-465.   DOI
55 Barber, M. S., Bertram, R. E. and Ride, J. P. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Pathol. 34: 3-12.   DOI
56 Belair, G. and Tremblay, N. 1995. The influence of chitin-urea amendments applied to an organic soil on a Meloidogyne hapla population and on the growth of greenhouse tomato. Phytoprotection 76: 75-80.   DOI
57 Hong, S. H., Anees, M. and Kim, K. Y. 2013. Biocontrol of Meloidogyne incognita inciting disease in tomato by using a mixed compost inoculated with Paenibacillus ehimensis RS820. Bio-control Sci. Technol. 23: 1024-1039.   DOI
58 Hayward, A. C., Fegan, N., Fegan, M. and Stirling, G. 2010. Stenotrophomonas and Lysobacter: ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J. Appl. Microbiol. 108: 756-770.   DOI
59 Hellberg, J. E., Matilla, M. A. and Salmond, G. P. 2015. The broadspectrum antibiotic, zeamine, kills the nematode worm Caenorhabditis elegans. Front. Microbiol. 6: 137.
60 Hodgson, J. J., Arif, B. M. and Krell, P. J. 2013. Role of interactions between Autographa californica multiple nucleopolyhedrovirus procathepsin and chitinase chitin-binding or active-site domains in viral cathepsin processing. J. Virol. 87: 3471-3483.   DOI
61 Insunza, V., Alstrom, S. and Eriksson, K. B. 2002. Root bacteria from nematicidal plants and their biocontrol potential against trichodorid nematodes in potato. Plant Soil 241: 271-278.   DOI
62 Jabrane, A., Sabri, A., Compere, P., Jacques, P., Vandenberghe, I., Van Beeumen, J. and Thonart, P. 2002. Characterization of serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl. Environ. Microbiol. 68: 5704-5710.   DOI
63 Kishore, G. K., Pande, S. and Podile, A. R. 2005b. Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence-related enzymes. J. Phytopathol. 153: 169-173.   DOI
64 Kim, Y. C., Lee, J. H., Bae, Y. S., Sohn, B. K. and Park, S. K. 2010. Development of effective environmentally-friendly approaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127: 443-450.   DOI
65 Kishore, G. K. and Pande, S. 2007. Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions. Lett. Appl. Microbiol. 44: 98-105.   DOI
66 Kishore, G. K., Pande, S. and Podile, A. R. 2005a. Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95: 1157-1165.   DOI
67 Aballay, E., Ordenes, P., Martensson, A. and Persson, P. 2013. Effects of rhizobacteria on parasitism by Meloidogyne ethiopica on grapevines. Eur. J. Plant Pathol. 135: 137-145.   DOI
68 Abiala, M. A., Odebode, A. C., Hsu, S. F. and Blackwood, C. B. 2015. Phytobeneficial properties of bacteria isolated from the rhizosphere of maize in southwestern Nigerian soils. Appl. Environ. Microbiol. 81: 4736-4743.   DOI
69 Singh, G., Bhalla, A., Bhatti, J. S., Chandel, S., Rajput, A., Abdullah, A., Andrabi, W. and Kaur, P. 2014. Potential of chitinases as a biopesticide against agriculturally harmful fungi and insects. Res. Rev.: J. Microbiol. Biotechnol. 3: 27-32.
70 Singh, P. D., Liu, W. C., Gougoutas, J. Z., Malley, M. F., Porubcan, M. A., Trejo, W. H., Wells, J. S. and Sykes, R. B. 1988. Aerocavin, a new antibiotic produced by Chromobacterium violaceum. J. Antibiot. 41: 446-453.   DOI
71 Kobayashi, D. Y., Reedy, R. M., Palumbo, J. D., Zhou, J. M. and Yuen, G. Y. 2005. A clp gene homologue belonging to the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Appl. Environ. Microbiol. 71: 261-269.   DOI
72 Palumbo, J. D., Yuen, G. Y., Jochum, C. C., Tatum, K. and Kobayashi, D. Y. 2005. Mutagenesis of beta -1, 3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95: 701-707.   DOI
73 Park, S. K. and Kim, K. C. 1991. Pathogenicities of pathogens and disease complex associated with wilt of hot pepper plants cropped in plastic house. Korean J. Plant Pathol. 7: 28-36.
74 Park, S. K., Lee, H. Y. and Kim, K. C. 1995. Antagonistic effect of chitinolytic bacteria on soilborne plant pathogens. Korean J. Plant Pathol. 11: 47-52.
75 Kobayashi, D. Y. and Yuen, G. Y. 2005. The role of clp-regulated factors in antagonism against Magnaporthe poae and biological control of summer patch disease of Kentucky bluegrass by Lysobacter enzymogenes C3. Can. J. Microbiol. 51: 719-723.   DOI
76 Kurze, S., Bahl, H., Dahl, R. and Berg, G. 2001. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Dis. 85: 529-534.   DOI
77 Someya, N., Ikeda, S., Morohoshi, T., Tsujimoto, N. M., Yoshida, T., Sawada, H., Ikeda, T. and Tsuchiya, K. 2011. Diversity of culturable chitinolytic bacteria from rhizospheres of agronomic plants in Japan. Microbes Environ. 26: 7-14.   DOI
78 Singh, P. P., Shin, Y. C., Park, C. S. and Chung, Y. R. 1999. Biological control of fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89: 92-99.   DOI
79 Slimene, I. B., Tabbene, O., Gharbi, D., Mnasri, B., Schmitter, J. M., Urdaci, M. C. and Limam, F. 2015. Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Appl. Biochem. Biotechnol. 175: 3494-3506.   DOI
80 Sneh, B., Schuster, S. and Gross, S. 1983. Improvement of the insecticidal activity of Bacillus thuringiensis var. entomocidus on larvae of Spodoptera littoralis (Lepidoptera, Noctuidae) by addition of chitinolytic bacteria, a phagostimulant and a UVprotectant. J. Appl. Entomol. 96: 77-83.
81 Someya, N., Kataoka, N., Komagata, T., Hirayae, K., Hibi, T. and Akutsu, K. 2000. Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis. 84: 334-340.   DOI
82 Park, S. K., Lee, M. C. and Harman, G. E. 2005. The biocontrol activity of Chromobacterium sp. strain C-61 against Rhizoctonia solani depends on the productive ability of chitinase. Plant Pathol. J. 21: 275-282.   DOI
83 De Vleesschauwer, D. and Hofte, M. 2007. Using Serratia plymuthica to control fungal pathogens of plants. CAB Rev.: Perspect. Agric., Vet. Sci., Nutr. Nat. Resour. 2: 046.
84 Divatar, M., Ahmed, S. and Lingappa, K. 2016. Isolation and screening of soil microbes for extracellular chitinase activity. J. Adv. Sci. Res. 7: 10-14.
85 Yu, F., Zaleta-Rivera, K., Zhu, X., Huffman, J., Millet, J. C., Harris, S. D., Yuen, G., Li, X. C. and Du, L. 2007. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimcrob. Agents Chemother. 51: 64-72.   DOI
86 Ladner, D. C., Tchounwou, P. B. and Lawrence, G. W. 2008. Evaluation of the effect of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum. Int. J. Environ. Res. Pub. Health 5: 104-110.   DOI
87 Lee, Y. S. and Kim, K. Y. 2016. Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J. Phytopathol. 164: 29-39.   DOI
88 Ghasemi, S., Ahmadian, G., Jelodar, N. B., Rahimian, H., Ghandili, S., Dehestani, A. and Shariati, P. 2010. Antifungal chitinases from Bacillus pumilus SG2: preliminary report. World J. Microbiol. Biotechnol. 26: 1437-1443.   DOI
89 Giesler, L. J. and Yuen, G. Y. 1998. Evaluation of Stenotrophomonas maltophilia strain C3 for biocontrol of brown patch disease. Crop Prot. 17: 509-513.   DOI
90 Xu, S. J., Hong, S. J., Choi, W. and Kim, B. S. 2014. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol. J. 30: 102-108.   DOI
91 Folman, L. B., De Klein, M. J. E. M., Postma, J. and Van Veen, J. A. 2004. Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1 T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol. Control 31: 145-154.   DOI
92 Domenech, J., Reddy, M. S., Kloepper, J. W., Ramos, B. and Gutierrez-Manero, J. 2006. Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. BioControl 51: 245-258.   DOI
93 Duran, N., Antonio, R. V., Haun, M. and Pilli, R. A. 1994. Biosynthesis of a trypanocide by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 10: 686-690.   DOI
94 El-Tarabily, K. A., Sykes, M. L., Kurtboke, I. D., Hardy, G. E. S. J., Barbosa, A. M. and Dekker, R. F. H. 1996. Synergistic effects of a cellulase-producing Micromonospora carbonacea and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can. J. Bot. 74: 618-624.   DOI
95 Folman, L. B., Postma, J. and van Veen, J. A. 2003. Characterisation of Lysobacter enzymogenes (Christensen and Cook 1978) strain 3.1 T8, a powerful antagonist of fungal diseases of cucumber. Microbiol. Res. 158: 107-115.   DOI
96 Frankowski, J., Lorito, M., Scala, F., Schmid, R., Berg, G. and Bahl, H. 2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch. Microbiol. 176: 421-426.   DOI
97 Parker, W. L., Rathnum, M. L., Johnson, J. H., Wells, J. S., Prinipe, P. A. and Sykes, R. B. 1988. Aerocyanidin, a new antibiotic produced by Chromobacterium violaceum. J. Antibiot. 41: 454-460.   DOI
98 Ha, W. J., Kim, Y. C., Jung, H. and Park, S. K. 2014. Control of the root-knot nematode (Meloidogyne spp.) on cucumber by a liquid bio-formulation containing chitinolytic bacteria, chitin and their products. Res. Plant Dis. 20: 112-118. (In Korean)   DOI
99 Giotis, C., Markelou, E., Theodoropoulou, A., Toufexi, E., Hodson, R., Shotton, P., Shiel, R., Cooper, J. and Leifert, C. 2009. Effect of soil amendments and biological control agents (BCAs) on soilborne root diseases caused by Pyrenochaeta lycopersici and Verticillium albo-atrum in organic greenhouse tomato production systems. Eur. J. Plant Pathol. 123: 387-400.   DOI
100 Godoy, G., Rodriguez-Kabana, R., Shelby, R. A. and Morgan-Jones, G. 1983. Chitin amendments for control of Meloidogyne arenaria in infested soil. II. Effects on microbial population. Nematropica 13: 63-74.
101 Halder, S. K., Maity, C., Jana, A., Das, A., Paul, T., Mohapatra, P. K. D., Pati, B. R. and Mondal, K. C. 2013. Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int. Biodeterior. Biodegrad. 79: 88-97.   DOI
102 Hallmann, J., Rodriguez-Kabana, R. and Kloepper, J. W. 1999. Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol. Biochem. 31: 551-560.   DOI
103 Khan, Z., Kim, S. G., Jeon, Y. H., Khan, H. U., Son, S. H. and Kim, Y. H. 2008. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour. Technol. 99: 3016-3023.   DOI
104 Yuen, G., Broderick, K., Moore, W. and Caswell-Chen, E. 2006. Effects of Lysobacter enzymogenes C 3 and its antibiotic dihydromaltophilin on nematodes. Phytopathology 96: S128.
105 Matilla, M. A., Drew, A., Udaondo, Z., Krell, T. and Salmond, G. P. 2016a. Genome sequence of Serratia plymuthica A153, a model rhizobacterium for the investigation of the synthesis and regulation of haterumalides, zeamine, and andrimid. Genome Announc. 4: e00373-16.
106 Kamensky, M., Ovadis, M., Chet, I. and Chernin, L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35: 323-331.   DOI
107 Kielak, A. M., Cretoiu, M. S., Semenov, A. V., Sorensen, S. J. and van Elsas, J. D. 2013. Bacterial chitinolytic communities respond to chitin and pH alteration in soil. Appl. Environ. Microbiol. 79: 263-272.   DOI
108 Kilic-Ekici, O. and Yuen, G. Y. 2003. Induced resistance as a mechanism of biological control by Lysobacter enzymogenes strain C3. Phytopathology 93: 1103-1110.   DOI
109 Kilic-Ekici, O. and Yuen, G. Y. 2004. Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol. Control 30: 446-455.   DOI
110 Postma, J. and Schilder, M. T. 2015. Enhancement of soil suppressiveness against Rhizoctonia solani in sugar beet by organic amendments. Appl. Soil Ecol. 94: 72-79.   DOI
111 Qian, G. L., Hu, B. S., Jiang, Y. H. and Liu, F. Q. 2009. Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens. Agric. Sci. Chin. 8: 68-75.   DOI
112 Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M. and Ahmed, N. S. 2012. Extraction, characterization, and nematicidal activity of chitin and chitosan derived from shrimp shell wastes. Biol. Fert. Soils 48: 463-468.   DOI
113 Rajkumar, M., Lee, K. J. and Freitas, H. 2008. Effects of chitin and salicylic acid on biological control activity of Pseudomonas spp. against damping off of pepper. S. Afr. J. Bot. 74: 268-273.   DOI
114 Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V. and Samiyappan, R. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20: 1-11.   DOI
115 Rathore, A. S. and Gupta, R. D. 2015. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015: 791907.
116 Regev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I., Ginzberg, I., Koncz-Kalman, Z., Koncz, C., Schell, J. and Zilberstein, A. 1996. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbiol. 62: 3581-3586.
117 Li, S., Jochum, C. C., Yu, F., Zaleta-Rivera, K., Du, L., Harris, S. D. and Yuen, G. Y. 2008. An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology 98: 695-701.   DOI
118 Lee, Y. S., Park, Y. S., Kim, S. B. and Kim, K. Y. 2013. Biological control of root-knot nematode by Lysobacter capsici YS1215. Korean J. Soil Sci. Fert. 46: 105-111. (In Korean)   DOI
119 Leon, L. L., Miranda, C. C., De Souza, A. O. and Duran, N. 2001. Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J. Antimicrob. Chemother. 48: 449-450.   DOI
120 Levenfors, J. J., Hedman, R., Thaning, C., Gerhardson, B. and Welch, C. J. 2004. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem. 36: 677-685.   DOI
121 Liopa-Tsakalidi, A., Chalikiopoulos, D., and Papasavvas, A. 2010. Effect of chitin on growth and chlorophyll content of two medicinal plants. J. Med. Plants Res. 4: 499-508.
122 Liu, D., Cai, J., Xie, C. C., Liu, C. and Chen, Y. H. 2010. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb. Technol. 46: 252-256.   DOI
123 Zhang, Z. and Yuen, G. Y. 1999. Biological control of Bipolaris sorokiniana on tall fescue by Stenotrophomonas maltophilia strain C3. Phytopathology 89: 817-822.   DOI
124 Kim, H. J., Choi, H. S., Yang, S. Y., Kim, I. S., Yamaguchi, T., Sohng, J. K., Park, S. K., Kim, J. C., Lee, C. H., Gardener, B. M. and Kim, Y. C. 2014. Both extracellular chitinase and a new cyclic lipopeptide, chromobactomycin, contribute to the biocontrol activity of Chromobacterium sp. C61. Mol. Plant Pathol. 15: 122-132.   DOI
125 Kim, H. J., Park, J. Y., Han, S. H., Lee, J. H., Rong, X., Gardener, B. B. M., Park, S. K. and Kim, Y. C. 2011. Draft genome sequence of the biocontrol bacterium Chromobacterium sp. strain C-61. J. Bacteriol. 193: 6803-6804.   DOI
126 Liu, M., Cai, Q. X., Liu, H. Z., Zhang, B. H., Yan, J. P. and Yuan, Z. M. 2002. Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J. Appl. Microbiol. 93: 374-379.   DOI
127 Manjula, K. and Podile, A. R. 2001. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Can. J. Microbiol. 47: 618-625.   DOI
128 Yuen, G. Y., Jochum, C. C., Osborne, L. E. and Jin, Y. 2003. Biocontrol of Fusarium head blight in wheat by Lysobacter enzymogenes C3. Phytopathology 93: S93.
129 Yuen, G. Y., Steadman, J. R., Lindgren, D. T., Schaff, D. and Jochum, C. 2001. Bean rust biological control using bacterial agents. Crop Prot. 20: 395-402.   DOI
130 Zhang, W., Li, Y., Qian, G., Wang, Y., Chen, H., Li, Y. Z., Liu, F., Shen, Y. and Du, L. 2011. Identification and characterization of the anti-methicillin-resistant Staphylococcus aureus WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11. Antimcrob. Agents Chemother. 55: 5581-5589.   DOI
131 Zhang, Z., Yuen, G. Y., Sarath, G. and Penheiter, A. R. 2001. Chitinases from the plant disease biocontrol agent, Stenotrphomonas maltophiliao C3. Phytopathology 91: 204-211.   DOI
132 Spiegel, Y., Cohn, E., Galper, S., Sharon, E. and Chet, I. 1991. Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogynejavanica. Biocontrol Sci. Technol. 1: 115-125.   DOI
133 Someya, N., Nakajima, M., Hirayae, K., Hibi, T. and Akutsu, K. 2001. Synergistic antifungal activity of chitinolytic enzymes and prodigiosin produced by biocontrol bacterium, Serratia marcescens strain B2 against gray mold pathogen, Botrytis cinerea. J. Gen. Plant Pathol. 67: 312-317.   DOI
134 Someya, N., Nakajima, M., Watanabe, K., Hibi, T. and Akutsu, K. 2005. Potential of Serratia marcescens strain B2 for biological control of rice sheath blight. Biocontrol Sci. Technol. 15: 105-109.   DOI
135 Spiegel, Y., Chet, I. and Cohn, E. 1987. Use of chitin for controlling plant plant-parasitic nematodes. II. Mode of action. Plant Soil 98: 337-345.   DOI
136 Cretoiu, M. S., Korthals, G. W., Visser, J. H. M. and van Elsas, J. D. 2013. Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Appl. Environ. Microbiol. 79: 5291-5301.   DOI
137 Cronin, D., Moenne-Loccoz, Y., Dunne, C. and O'gara, F. 1997. In-hibition of egg hatch of the potato cyst nematode Globodera rostochiensis by chitinase-producing bacteria. Eur. J. Plant Pathol. 103: 433-440.   DOI
138 da Silva Melo, P., Maria, S. S., Vidal, B. C., Haun, M. and Duran, N. 2000. Violacein cytotoxicity and induction of apoptosis in V79 cells. In Vitro Cell Dev. Biol. Anim. 36: 539-543.   DOI
139 D'Addabbo, T. 1995. The nematicidal effect of organic amendments: a review of the literature, 1982-1994. Nematol. Medit. 23: 299-305.
140 Dandurishvili, N., Toklikishvili, N., Ovadis, M., Eliashvili, P., Giorgobiani, N., Keshelava, R., Tediashvili, M., Vainstein, A., Khmel, I., Szegedi, E. and Chernin, L. 2011. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J. Appl. Microbiol. 110: 341-352.   DOI
141 de Boer, M., Bom, P., Kindt, F., Keurentjes, J. J., van der Sluis, I., van Loon, L. C. and Bakker, P. A. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93: 626-632.   DOI
142 de Bruijn, I., Cheng, X., de Jager, V., Exposito, R. G., Watrous, J., Patel, N., Postma, J., Dorrestein, P. C., Kobayashi, D. and Raaijmakers, J. M. 2015. Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 16: 991.   DOI
143 De Souza, A. O., Girello-Aily, D. C., Sato, D. N. and Duran, N. 1999. In vitro activity of violacein against Mycobacterium tuberculosis H37RA. Rev. Inst. Adolfo Lutz 58: 59-62.