DOI QR코드

DOI QR Code

Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

  • Nam, Hyo Song (Jeonnam Bioindustry Foundation, BioControl Research Center) ;
  • Anderson, Anne J. (Department of Biological Engineering, Utah State University) ;
  • Kim, Young Cheol (Department of Applied Biology, Chonnam National University)
  • Received : 2017.12.16
  • Accepted : 2018.02.28
  • Published : 2018.06.01

Abstract

Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above $1{\times}10^8$ colony forming units/g after storage of the powder at $25^{\circ}C$ for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes.

Keywords

References

  1. Abawi, G. S. and Widmer, T. L. 2000. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl. Soil Ecol. 15:37-47. https://doi.org/10.1016/S0929-1393(00)00070-6
  2. Anderson, A. J. and Kim, Y. C. 2018. Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Prot. 105:62-69. https://doi.org/10.1016/j.cropro.2017.11.009
  3. Anderson, A. J., Kang, B. R. and Kim, Y. C. 2017. The Gac/Rsm signaling pathway of a biocontrol bacterium, Pseudomonas chlororaphis O6. Res. Plant Dis. 23:212-227. https://doi.org/10.5423/RPD.2017.23.3.212
  4. Anita, B., Rajendran, G. and Samiyappan, R. 2004. Induction of systemic resistance in tomato against root-knot nematode, Meloidogyne incognita by Pseudomonas fuorescens. Nematol. Mediterr. 32:47-51.
  5. Anwar, S. A., McKenry, M. V., Yang, K. Y. and Anderson, A. J. 2003. Induction of tolerance to root-knot nematode by oxycom. J. Nematol. 35:306-313.
  6. Ardakani, S. S., Heydari, A., Khorasani, N. and Arjmandi, R. 2010. Development of new bioformulations of Pseudomonas fuorescens and evaluation of these products against damping-off of cotton seedlings. J. Plant Pathol. 92:83-88.
  7. Burges, H. D. 1998. Formulation of microbial pesticides: benefcial microorganisms, nematodes and seed treatments, ed. by H. D. Burges. Kluwer Academic Publishers, Dordrecht, Nederlands.
  8. Castric, P. A. 1977. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. J. Bacteriol. 130:826-831.
  9. Chinheya, C. C., Yobo, K. S. and Laing, M. D. 2017. Biological control of the rootknot nematode, Meloidogyne javanica (Chitwood) using Bacillus isolates, on soybean. Biol. Control 109:37-41. https://doi.org/10.1016/j.biocontrol.2017.03.009
  10. Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chloro- raphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28:202-206. https://doi.org/10.5423/PPJ.2012.28.2.202
  11. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., Cho, B. H., Yang, K. Y., Ryu, C. M. and Kirn, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  12. Choudhary, D. K., Prakash, A. and Johri, B. N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47:289-297. https://doi.org/10.1007/s12088-007-0054-2
  13. Duffy, B. K. and Defago, G. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fuorescens biocontrol strains. Appl. Environ. Microbol. 65:2429-2438.
  14. Gallagher, L. A. and Manoil, C. 2001. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol. 183:6207-6214. https://doi.org/10.1128/JB.183.21.6207-6214.2001
  15. Ha, W. J., Kim, Y. C., Jung, H. and Park, S. K. 2014. Control of the root-knot nematode (Meloidogyne spp.) on cucumber by a liquid bio-formulation containing chitinolytic bacteria, chitin and their products. Res. Plant Dis. 20:112-118. https://doi.org/10.5423/RPD.2014.20.2.112
  16. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930. https://doi.org/10.1094/MPMI-19-0924
  17. Jang, J. Y., Choi, Y. H., Shin, T. S., Kim, T. H., Shin, K.-S., Park, H. W., Kim, Y. H., Kim, H., Choi, G. J. and Jang, K. S. 2016. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS One 11:e0156230. https://doi.org/10.1371/journal.pone.0156230
  18. Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Kikuchi, T., Manzanilla-Lopez, R., Palomares-Rius, J. E., Wesemael, W. M. and Perry, R. N. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 14:946-961. https://doi.org/10.1111/mpp.12057
  19. Kang, B. R., Anderson, A. J. and Kim, Y. C. 2018. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol. J. 34:35-43.
  20. Kang, B. R., Han, S.-H., Zdor, R. E., Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim, Y. C. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593.
  21. Kim, J. C., Choi, G. J., Park, J. H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57:554-559. https://doi.org/10.1002/ps.318
  22. King, E. O., Ward, M. and Raney, D. 1954. Two simple media for the demonstration of pyocyanin and fuorescein. J. Lab. Clin. Med. 44:301-307.
  23. Knowles, C. J. and Bunch, A. W. 1986. Microbial cyanide metabolism. Adv. Microb. Physiol. 27:73-111.
  24. Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62:746-751. https://doi.org/10.1007/s00284-010-9779-y
  25. Manikandan, R., Saravanakumar, D., Rajendran, L., Raguchander, T. and Samiyappan, R. 2010. Standardization of liquid formulation of Pseudomonas fuorescens Pf1 for its effcacy against Fusarium wilt of tomato. Biol. Control 54:83-89. https://doi.org/10.1016/j.biocontrol.2010.04.004
  26. Melin, P., Hakansson, S. and Schnurer, J. 2007. Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala J121. Appl. Microbiol. Biotechnol. 73:1008-1016.
  27. Moens, M., Perry, R. N. and Starr, J. L. 2009. Meloidogyne species-a diverse group of novel and important plant parasites. In: Root-knot nematodes (vol. 1), eds. R. N. Perry, M. Moens and J. L. Starr, pp. 1-17. CABI Publishing, Wallingford, UK.
  28. Nahar, K., Kyndt, T., De Vleesschauwer, D., Hofte, M. and Gheysen, G. 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol. 157:305-316. https://doi.org/10.1104/pp.111.177576
  29. Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. D., Loewen, P. C. and De Kievit, T. R. 2015. Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10:e0123184. https://doi.org/10.1371/journal.pone.0123184
  30. Oh, M., Han, J. W., Choi, J. S., Choi, Y. H., Jang, K. S., Choi, G. J. and Kim, H. 2016. Nematicidal activity of Streptomyces favogriseus KRA15-528 to Meloidogyne incognita. Res. Plant Dis. 22:227-235. https://doi.org/10.5423/RPD.2016.22.4.227
  31. Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C., Anderson, A. J. and Kim, Y. C. 2013. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobacterium Pseudomonas chlororaphis O6. Can. J. Microbiol. 59:556-562. https://doi.org/10.1139/cjm-2013-0062
  32. Oka, Y., Cohen, Y. and Spiegel, Y. 1999. Local and systemic induced resistance to the root-knot nematode in tomato by DL-${\beta}$-amino-n-butyric acid. Phytopathology 89:1138-1143. https://doi.org/10.1094/PHYTO.1999.89.12.1138
  33. Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J. C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
  34. Prathuangwong, S., Athinuwat, D., Chuaboon, W., Chatnaparat, T. and Buensanteai, N. 2013. Bioformulation Pseudomonas fuorescens SP007s against dirty panicle disease of rice. Afr. J. Microbiol. Res. 7:5274-5283. https://doi.org/10.5897/AJMR2013.2503
  35. Radtke, C., Cook, W. S. and Anderson, A. 1994. Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl. Microbiol. Biotechnol. 41:274-280. https://doi.org/10.1007/BF00186972
  36. Radwan, M. A., Farrag, S. A. A., Abu-Elamayem, M. M. and Ahmed, N. S. 2012. Biological control of the root-knot nematode, Meloidogyne incognita on tomato using bioproducts of microbial origin. Appl. Soil Ecol. 56:58-62. https://doi.org/10.1016/j.apsoil.2012.02.008
  37. Rao, M. S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., Grace, G. N., Chaya, M. K. and Gopalakrishnan, C. 2017. Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Sci. Hortic. 218:56-62. https://doi.org/10.1016/j.scienta.2017.01.051
  38. Rich, J. R., Brito, J. A., Kaur, R. and Ferrell, J. A. 2009. Weed species as hosts of Meloidogyne: a review. Nematropica 39:157-185.
  39. Ruanpanun, P., Laatsch, H., Tangchitsomkid, N. and Lumyong, S. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol. Biotechnol. 27:1373-1380. https://doi.org/10.1007/s11274-010-0588-z
  40. Ryu, C. M., Kang, B. R., Han, S. H., Cho, S. M., Kloepper, J. W., Anderson, A. J. and Kim, Y. C. 2007. Tobacco cultivars vary in induction of systemic resistance against Cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutant. Eur. J. Plant Pathol. 119:383-390. https://doi.org/10.1007/s10658-007-9168-y
  41. Saha, T. and Khan, M. R. 2016. Evaluation of bioformulations for management of root knot nematode (Meloidogyne incognita) infecting tuberose. Pak. J. Zool. 48:651-656.
  42. Sahebani, N. and Hadavi, N. 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem. 40:2016-2020. https://doi.org/10.1016/j.soilbio.2008.03.011
  43. Samavat, S., Heydari, A., Zamanizadeh Hamid, R., Rezaee, S. and Aliabadi Ali, A. 2014. Application of new bioformulations of Pseudomonas aureofaciens for biocontrol of cotton seedling damping-off. J. Plant Prot. Res. 54:334-339. https://doi.org/10.2478/jppr-2014-0050
  44. Schisler, D. A., Slininger, P. J., Behle, R. W. and Jackson, M. A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271. https://doi.org/10.1094/PHYTO.2004.94.11.1267
  45. Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N. and Samiyappan, R. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp cubense and Helicotylenchus multicinctus in banana plantation. BioControl 59:345-355. https://doi.org/10.1007/s10526-014-9569-8
  46. Seo, Y. and Kim, Y. H. 2014. Control of Meloidogyne incognita using mixtures of organic acids. Plant Pathol. J. 30:450-455. https://doi.org/10.5423/PPJ.NT.07.2014.0062
  47. Siddiqui, I. A. and Shaukat, S. S. 2004. Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J. Phytopathol. 152:48-54. https://doi.org/10.1046/j.1439-0434.2003.00800.x
  48. Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H. and Khan, A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 22:641-650. https://doi.org/10.1007/s11274-005-9084-2
  49. Southey, J. F. 1986. Laboratory methods for work with plant and soil nematodes. H.M.S.O. Books, Norfolk, UK.
  50. Spencer, M., Ryu, C. M., Yang, K. Y., Kim, Y. C., Kloepper, J. W. and Anderson, A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol. Mol. Plant Pathol. 63:27-34. https://doi.org/10.1016/j.pmpp.2003.09.002
  51. Thiyagarajan, S. S. and Kuppusamy, H. 2014. Biological control of root knot nematodes in chillies through Pseudomonas fuorescens's antagonistic mechanism. J. Plant Sci. 2:152-158.
  52. Voisard, C., Keel, C., Haas, D. and Defago, G. 1989. Cyanide production by Pseudomonas fuorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J. 8:351-358. https://doi.org/10.1002/j.1460-2075.1989.tb03384.x
  53. Wada, S., Toyota, K. and Takada, A. 2011. Effects of the nematicide imicyafos on soil nematode community structure and damage to radish caused by Pratylenchus penetrans. J. Nematol. 43:1-6.
  54. Wissing, F. 1974. Cyanide formation from oxidation of glycine of Pseudomonas species. J. Bacteriol. 117:1289-1294.
  55. Zeng, Q., Huang, H., Zhu, J., Fang, Z., Sun, Q. and Bao, S. 2013. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie Van Leeuwenhoek 103:1107-1111. https://doi.org/10.1007/s10482-013-9890-8