DOI QR코드

DOI QR Code

Mannitol Amendment as a Carbon Source in a Bean-based Formulation Enhances Biocontrol Efficacy of a 2,4-diacetylphloroglucinol-producing Pseudomonas sp. NJ134 Against Tomato Fusarium Wilt

  • Kang, Beom-Ryong (Environment-Friendly Agricultural Research Institute, Jeollanamdo Agricultural Research and Extension Services)
  • Received : 2011.10.26
  • Accepted : 2011.11.16
  • Published : 2011.12.01

Abstract

Fusarium wilt caused by Fusarium oxysporum has become a serious problem world-wide and relies heavily on chemical fungicides. We selected Pseudomonas sp. NJ134 to develop an effective biocontrol strategy. This strain shows strong antagonistic activity against F. oxysporum. Biochemical analyses of ethyl-acetate extracts of NJ134 culture filtrates showed that 2,4-diacetylphloroglucinol (DAPG) was the major compound inhibiting in vitro growth of F. oxysporum. DAPG production was greatly enhanced in the NJ134 strain by adding mannitol to the growth media, and in vitro antagonistic activity against F. oxysporum increased. Bioformulations developed from growth of NJ134 in sterile bean media with mannitol as the carbon source under plastic bags resulted in effective biocontrol efficacy against Fusarium wilt. The efficacy of the bioformulated product depended on the carbon source and dose. Mannitol amendment in the bean-based formulation showed strong effective biocontrol against tomato Fusarium wilt through increased DAPG levels and a higher cell density compared to that in a glucose-amended formulation. These results suggest that this bioformulated product could be a new effective biocontrol system to control Fusarium wilt in the field.

Keywords

References

  1. Anitha, A. and Rabeeth, M. 2009. Control of Fusarium wilt of tomato by bioformulation of Streptomyces griseus in green house condition. Afr. J. Basic Appl. Sci. 1:9-14.
  2. Bushby, H. V. A. and Marshall, K. C. 1977. Some factors affecting the survival of root-nodule bacteria on desiccation. Soil Biol. Biochem. 9:143-147. https://doi.org/10.1016/0038-0717(77)90065-7
  3. Caesar, A. J. and Burr, T. J. 1991. Effect of conditioning, betaine, and sucrose on survival of rhizobacteria in powder formulations. Appl. Environ. Microbiol. 57:168-172.
  4. Cappellini, R. A. and Peterson, J. L. 1965. Macroconidium formation in submerged cultures by a nonsporulating strain of Gibberella zeae. Mycologia 57:962-966. https://doi.org/10.2307/3756895
  5. Commarea, R. R., Nandakumara, R., Kandana, A., Sureshb, S., Bharathib, M., Raguchandera, T. and Samiyappana, R. 2002. Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Protect. 21:671-677. https://doi.org/10.1016/S0261-2194(02)00020-0
  6. Douglas, W. J. and Gutterson, N. I. 1986. Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl. Environ. Microbiol. 52:1183-1189.
  7. Duffy, B. K. and Défago, G. 1997. Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250-1257. https://doi.org/10.1094/PHYTO.1997.87.12.1250
  8. Duffy, B. K. and Defago, G. 1999 Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429-2438.
  9. Dwivedi, D. and Johri, B. N. 2003. Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Curr. Sci. 85: 1693-1703.
  10. Ferreira, A., O'Byrne, C. P. and Boor, K. J. 2001. Role of $\sigma^{B}$ in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl. Environ. Microbiol. 67:4454-4457. https://doi.org/10.1128/AEM.67.10.4454-4457.2001
  11. Ishikawa, R., Shirouzu, K., Nakashita, H., Lee, H. Y., Motoyama, T., Yamaguchi, I., Teraoka, T. and Arie, T. 2005. Foliar spray of validamycin A or validoxylamine A controls tomato Fusarium wilt. Phytopathology 95:1209-1216. https://doi.org/10.1094/PHYTO-95-1209
  12. Karus, J. and Loper, J. E. 1995. Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61:849-854.
  13. Keel, C., Weller, D. E., Natsch, A., Défago, G., Cook, R. J. and Thomas, L. S. 1996. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl. Environ. Microbiol. 62:552-563.
  14. Kets, E. P. W., Galinski, E. A., de Wit, M., de Bont, J. A. M. and Heipieper, H. J. 1996. Mannitol, a Novel bacterial compatible solute in Pseudomonas putida S12. J. Bacteriol. 178:6665-6670. https://doi.org/10.1128/jb.178.23.6665-6670.1996
  15. KeU, C., Schneider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U., Wirthner, P., Haas, D. F. and Défago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2,4-diacetylphloro-glucinol. Mol. Plant-Microbe Interact. 5:4-13. https://doi.org/10.1094/MPMI-5-004
  16. Kim, Y. C., Jung, H. Kim, K. Y. and Park, S. K. 2008. An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J. Plant Pathol. 120:373-382. https://doi.org/10.1007/s10658-007-9227-4
  17. Kim, Y. C., Lee, J. H., Bae, Y.-S. Sohn, B.-K. and Park, S. K. 2010. Development of effective environmentally-friendly approaches to control Alternaria blight and anthracnose diseases of Korean ginseng. Eur. J. Plant Pathol. 127:443-450. https://doi.org/10.1007/s10658-010-9610-4
  18. Lee, E. H. 2009. Biological control activity of Fusarium wilt in tomato using Pseudomonas sp. NJ134. M.S thesis. Chonnam National University. Korea.
  19. Leeman, M., Den Ouden, F. M., van Pelt, J. A., Cornelissen, C., Matamala-Garros, A., Bakker, P. A. H. M. and Schippers, B. 1996. Suppression of Fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur. J. Plant Pathol. 102:21-31. https://doi.org/10.1007/BF01877112
  20. Marjan, B., Peter, B., Frodo, K., Joost, J. B., Keurentjes, I. S., van Loon, L. C. and Bakker, P. A. H. M. 2003. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology 93:626-632. https://doi.org/10.1094/PHYTO.2003.93.5.626
  21. Matsufuji, M., Nakata, K. and Yoshimoto, A. 1997. High production of rhamnolipid by Pseudomonas aeruginosa growing on ethanol. Biotechnol. Lett. 19:1213-1215. https://doi.org/10.1023/A:1018489905076
  22. Mavrodi, O. V., McSpadden-Gardener, B. B., Mavrodi, D. V., Bonsall, R. F., Weller, D. M. and Thomashow, L. S. 2001. Genetic diversity of phlD from 2,4-diacetylphloroglucinolproducing fluorescent Pseudomonas spp. Phytopathology 91: 35-43. https://doi.org/10.1094/PHYTO.2001.91.1.35
  23. McSpadden-Gardener, B. B., Schroeder, L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S. and Weller, A. D. M. 2000. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains from the rhizosphere of wheat. Appl. Environ. Microbiol. 66:1939-1946. https://doi.org/10.1128/AEM.66.5.1939-1946.2000
  24. Nowak-Thompson, B., Gould, S. J., Kraus, J. and Loper, J. E. 1994. Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can. J. Microhiol. 40:1064-1066. https://doi.org/10.1139/m94-168
  25. Nystrom, T. 2001. Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch. Microbiol. 176:159-164. https://doi.org/10.1007/s002030100314
  26. Osman, M., Ishigami, Y., Someya, J. and Jensen, H. B. 1996. The bioconversion of ethanol to biosurfactants and dye by a novel coproduction technique. J. Am. Oil. Chem. Soc. 73:851-856. https://doi.org/10.1007/BF02517986
  27. Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J.-C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537. https://doi.org/10.1111/j.1472-765X.2011.03036.x
  28. Raaijmakers, J. M. Bonsall, R. F. and Weller, D. M. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470-475. https://doi.org/10.1094/PHYTO.1999.89.6.470
  29. Shanahan, P., O'Sullivan, D. J., Simpson, P., Glennon, J. D. and O'Gara, F. 1992. Isolation of 2,4-diacetylphloroglucinol from a pseudomonad and investigation of physiological parameters influencing its production. Appl. Environ. Microbiol. 58:353-358.
  30. Shishido, M., Miwa, C., Usami, T., Amemiya, Y. and Johnson, B. K. 2005. Biological control efficiency of Fusarium wilt of Tomato by nonpathogenic Fusarium oxysporum Fo-B2 in different environments. Phytopathology 95:1072-1080. https://doi.org/10.1094/PHYTO-95-1072
  31. Slininger, P. J. and Jackson, M. A. 1992. Nutritional factors regulating growth and accumulation of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotechnol. 37:388-392. https://doi.org/10.1007/BF00210998
  32. Vidhyasekaran, P., Sethuraman, K., Rajappan, K. and Vasumathi, K. 1997. Powder formulations of Pseudomonas fluorescens to control pigeon pea wilt. Biol. Cont. 8:166-171. https://doi.org/10.1006/bcon.1997.0511
  33. Werra, P., Péchy-Tarr, M., Keel, C. and Maurhofer, M. 2009. Role of Gluconic acid production in the regulation of biocontrol traits of Pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75:4162-4174. https://doi.org/10.1128/AEM.00295-09
  34. Whister, C. A., Stockwell, V. O. and Loper, J. E. 2000. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 66: 2718-2725. https://doi.org/10.1128/AEM.66.7.2718-2725.2000
  35. Wood, D. W., Gong, F., Daykin, M. M., Williams, P. and Pierson, L. S. 1997. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30- 84 in the wheat rhizosphere. J. Bacteriol. 179:7663-7670. https://doi.org/10.1128/jb.179.24.7663-7670.1997
  36. Yigit, F. and Dikilitas, M. 2007. Control of Fusarium wilt of tomato by combination of fluorescent Pseudomonas, nonpathogen Fusarium and Trichoderma harzianum T-22 in greenhouse conditions. Plant Pathol. J. 6:159-163. https://doi.org/10.3923/ppj.2007.159.163
  37. Yuan, Z., Cang, S., Matsufuji, M., Nakata, K., Nagamatsu, Y. and Yoshimoto, A. 1998. High production of pyoluteorin and 2,4-diacetylphoroglucinol by Pseudomonas fluorescens S272 grown on ethanol as a sole carbon source. J. Ferment. Bioeng. 86:559-563. https://doi.org/10.1016/S0922-338X(99)80006-3