• Title/Summary/Keyword: Effective Strain

Search Result 1,777, Processing Time 0.037 seconds

The Forging Analysis of S/CAM Shaft to the Drum Brake (드럼브레이크 S/CAM 샤프트 단조 해석)

  • Kim, Mi-Ae;Sung, Back-Sub;Cha, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1113-1118
    • /
    • 2008
  • In the hot forging process, The forging defects that are caused by metal were strain, temperate, and inclusion. In this paper, the computer simulation analyzed the effective plastic strain and temperature behaviors. The quantitative analyses which proposed the effective mold design of S/CAM shaft was executed. The parameters of forging shape that affected on the optimize conditions that was calculated with simple equation were investigated. it is expected that the developed analysis model and design technique would greatly contribute to the drum brake optimal design considering temperature affected and material behaviors. This development could save more than 20% of production cost and reduced failure rate to more than 30%. By improving the life span of mold from 15,000 to 25,000, financial difficulty of company imposed on a mold manufacture could be overcome.

  • PDF

The Study of void Closing Behavior in Upset Forging of Large Ingot (대형 잉곳의 업셋 단조에서의 기공 압착 거동에 관한 연구)

  • Lee K. J.;Bae W. B.;Cho J. R.;Kim D. K.;Kim J. T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.406-409
    • /
    • 2005
  • In the forging operation of large ingot two break-down process are upsetting and cogging. The first purpose of upsetting is to ensure sufficient forging ratio for subsequent cogging operations and consolidate the voids along the centerline. The second purpose is related to improve the physical properties for a final product. Voids which are generated during the casting process can be one of the decisive defects of materials. So it is necessary to know the standard of Judgment for void-closure in upsetting operation. In practical conditions, FEM analysis(DEFORM 2D 8.1) was carried out to decide how much effective strain has influence on void-closure. It is finally suggested that the function consists of the effective strain of analysis data and the area rate of void.

  • PDF

Study on Strain Response Converted from Deformation in Tensile Test of Carbon Fiber Reinforced Polymers (CFRP) (탄소섬유보강폴리머의 인장시험시 변형으로부터 환산한 변형률 응답에 대한 연구)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.137-144
    • /
    • 2019
  • In coupon test of carbon fiber reinforced polymers (CFRP) as brittle materials, the converted strain derived from total deformation and effective length was introduced and its advantages were described. In general, measured value from strain gauge is used for determining the tensile properties of material, but it is not quite effective in CFRP because brittle material can not redistribute its stress and it only represents local behavior. For this reason, the converted strain response can be utilized effectively as a supplementary indicator, which evaluated the average value of tensile properties in brittle material and confirmed the strain measured by strain gauge. In addition, the converted strain clearly visualized 1) the effect of initial internal strain caused by fabrication errors and setup misalignment when applying gripping force and 2) post-response of partial rupture of CFRP caused by non-uniform strain distribution. non-uniform strain distribution.

Isolation and Identification of Antagonistic Microorganisms for Biological Control to Major Diseases of Apple Tree(Malus domestica Borkh) (사과 주요 병해 방제를 위한 길항미생물 분리 및 동정)

  • 박흥섭;조정일
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.137-147
    • /
    • 1996
  • For the purpose of acquiring microbial agents that can be utilized to biologically control the major airborne diseases to apple trees, such as canker(Botryosphaeria dothidea), bitter rot(Glomerella cingulata), alternaria leaf spot(Alternaria mali), root rot(rosellinia necatrix), canker(Valsa ceratosperma) and gray mold rot(Botrytis cinerea), the effective microorgaisms were isolated, tested for antagonistic activity to the pathogens causing major diseases to apple trees and identifed. Screening of more than 5,000 species of microorganisms collected in nature for them antagonistic action to the pathogens causing 5 major diseases to apple trees resulted in selection of effective species. Out of the 11 species, one species designated as CAP134 demonstrated outstanding activity. The bacterial strain, CAP134 exerted antagonistic efficiency of 57% on an isolated strain and 40% on a donated strain of Botryosphaeria dothidea., 52% on an isolated strain and 46% on a purchased strain of Alternaria mali, 60% on Valsa ceratosperma 25% on Glomerella cingulata, and 64% Rosellinia necatrix. The CAP134 was identified as a bacterial strain to Bacillus subtilis ATCC 6633 based on morephology, culture conditions, and physio-biochemical characteristics.

  • PDF

Study on the Hydrogen Delayed Fracture Property of TRIP Steel by Slow Strain Rate Testing Method (일정 변형률 시험에 의한 TRIP강의 수소 지연파괴 특성연구)

  • Cho, J.H.;Lee, J.K.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.131-135
    • /
    • 2011
  • The demands of high-strength steel have been steadily increased to reduce the weight of vehicles. Although the TRIP steel has been the promising candidate material for the purpose, high strength hinders the application due to the susceptibility to hydrogen delayed fracture in the corrosive environment. Moreover, the testing method was not specified in the ISO standards. In this work, the test method to evaluate the susceptibility of hydrogen delayed fracture was studied by slow strain rate testing technique. The four test experimental parameters were studied : strain rate, hydrogen charging time, holding time after hydrogen charging, and holding time after cadmium plating. The steel was fractured by hydrogen in case the strain rate was in the range of $1{\times}10^{-4}{\sim}5{\times}10^{-7}/sec$. It was confirmed that the slow strain rate test is effective method to evaluate the susceptibility to hydrogen delayed fracture. The holding time over 24 hrs after hydrogen charging, nullified the hydrogen effect, that is, the specimen was no more susceptible to hydrogen after 24 hrs even though the specimen was fully hydrogen-charged. Moreover, cadmium electroplating could not prevent from diffusing out the hydrogen from the steel in the experiment. The effective experimental procedures were discussed.

Effect of Admixtures on Drying Shrinkage Crack of Hardened Cement Mortar (시멘트경화체의 건조수축균열에 미치는 혼화재의 영향)

  • 이승한;이종석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.229-233
    • /
    • 1995
  • In this study we have the properties of drying shrinkage crack of hardened cement mortar using admixtures. The drying shrinkage cracking test process has been examined by the restrained drying shrinkage strain by restraining rate measuring properties of strain-with- restraint by JIS original proposal and keeps a flow value of mortar about 100$\pm$5%. The results show that the usage of shrinkage reducing agent 1.5% was effective on the control of drying shrinkage in OPC and CP by restraining rate 20% and strain-with-restraing 20~30 $\mu$, the usage of expansion agent 0.45% was effective by restraining rate 50~60% and strain-with-restraint 40~80$\mu$, and the effectiveness was increased with shrinkage reducing agent. Also. admixtures such as Flyash, CP and NC reduced restrained shrinkage and drying shrinkage cracking and more with shrinkage reducing agent

  • PDF

UBET Analysis on Precision Rib-Web Forgings (리브-웨브형 정밀단조에 관한 상계요소해석)

  • 이종헌;김영호;배원병
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1211-1219
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flash and flashless forgings. The simulation for flash and flashless forgings are applied axisy mmetric and plane-strain closed-die forging with rib-web type cavity. Inverse triangular and inverse trapezoidal elements are used to analyze flashless forging. The analysis is described for merit of flashless precision forging. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load and the flow pattern are in good agreement with experimental results.

Study on Internal Void Closure in Slab ingot during Hot Plate Forging (열간 판재단조시 강괴 내부의 기공폐쇄에 관한 연구)

  • 조종래;김동권;김영득;이부윤
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.18-26
    • /
    • 1996
  • In order to investigate the effect of pre-cooling of ingot on void closure in hot plate forging the internal strain and stress distributions are examined quantitatively by using ABAQUS. Simula-tions are carried out on a large slab ingot having the same temperature and the temperature gradient induced by air-cooling. It is shown that pre-cooling produces little effect on the strain behavior but remarkable effect on the hydrostatic stress at the central zone of ingot. The main factors for crushing micro-voids are the effective strain and the time integral of hydrostatic stress in the region surrounding the voids. Based on regression analysis it was found that the distortion of void can be expressed as a polynomial function of the two factors.

  • PDF

Investigation of 1D sand compression response using enhanced compressibility model

  • Chong, Song-Hun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.341-345
    • /
    • 2021
  • 1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.

Nonlinear finite element analysis of effective CFRP bonding length and strain distribution along concrete-CFRP interface

  • Dogan, Ali Baran;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.437-453
    • /
    • 2010
  • CFRP has been widely used for strengthening reinforced concrete members in last decade. The strain transfer mechanism from concrete face to CFRP is a key factor for rigidity, ductility, energy dissipation and failure modes of concrete members. For these reasons, determination of the effective CFRP bonding length is the most crucial step to achieve effective and economical strengthening. In this paper, generalizations are made on effective bonding length by increasing the amount of test data. For this purpose, ANSYS software is employed, and an experimentally verified nonlinear finite element model is prepared. Special contact elements are utilized along the concrete-CFRP strip interface for investigating stress distribution, load-displacement behavior, and effective bonding length. Then results are compared with the experimental results. The finite element model found consistent results with the experimental findings.