Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.4.341

Investigation of 1D sand compression response using enhanced compressibility model  

Chong, Song-Hun (Department of Civil Engineering, Sunchon National University)
Publication Information
Geomechanics and Engineering / v.25, no.4, 2021 , pp. 341-345 More about this Journal
Abstract
1D sand compression response to ko-loading experiences volume contraction from low to high effective stress regimes. Previous study suggested compressibility model with physically correct asymptotic void ratios at low and high stress levels and examined only for both remolded clays and natural clays. This study extends the validity of Enhanced Terzaghi model for different sand types complied from 1D compression data. The model involved with four parameters can adequately fit 1D sand compression data for a wide stress range. The low stress obtained from fitting parameters helps to identify the initial fabric conditions. In addition, strong correlation between compressibility and the void ratio at low stress facilitates determination of self-consistent fitting parameters. The computed tangent constrained modulus can capture monotonic stiffening effect induced by an increase in effective stress. The magnitude of tangent stiffness during large strain test should not be associated with small strain stiffness values. The use of a single continuous function to capture 1D stress-strain sand response to ko-loading can improve numerical efficiency and systematically quantify the yield stress instead of ad hoc methods.
Keywords
1D sand compression response; enhanced Terzaghi model; monotonic stiffening effect; tangential stiffness; small strain stiffness; yield stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Pestana, J.M. and Whittle, A.J. (1995), "Compression model for cohesionless soils", Geotechnique, 45(4), 611-631. https://doi.org/10.1680/geot.1995.45.4.611.   DOI
2 Randolph, M.F., Gaudin, C., Gourvenec, S.M., White, D.J., Boylan, N. and Cassidy, M.J. (2011), "Recent advances in offshore geotechnics for deep water oil and gas developments", Ocean Eng., 38(7), 818-834. https://doi.org/10.1016/j.oceaneng.2010.10.021.   DOI
3 Sridharan, A., Abraham, B.M. and Jose, B.T. (1991), "Improved technique for estimation of preconsolidation pressure", Geotechnique, 41(2), 263-268. https://doi.org/10.1680/geot.1991.41.2.263.   DOI
4 Tsuha, C.H.C., Foray, P.Y., Jardine, R.J., Yang, Z.X., Silva, M. and Rimoy, S. (2012), "Behaviour of displacement piles in sand under cyclic axial loading", Soils Found., 52(3), 393-410. https://doi.org/10.1016/j.sandf.2012.05.002.   DOI
5 Bransby, M.F. and Randolph, M.F. (1998), "Combined loading of skirted foundations", Geotechnique, 48(5), 637-655. https://doi.org/10.1680/geot.1998.48.5.637.   DOI
6 Hagerty, M., Hite, D., Ullrich, C. and Hagerty, D. (1993), "One-dimensional high-pressure compression of granular media", J. Geotech. Eng., 119(1), 1-18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).   DOI
7 DeJong, J. and Christoph, G. (2009), "Influence of particle properties and initial specimen state on one-dimensional compression and hydraulic conductivity", J. Geotech. Geoenviron. Eng., 135(3), 449-454. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(449).   DOI
8 Wang, Z., Lu, Y., Hao, H. and Chong, K. (2005), "A full coupled numerical analysis approach for buried structures subjected to subsurface blast", Comput. Struct., 83(4-5), 339-356. https://doi.org/10.1016/j.compstruc.2004.08.014.   DOI
9 Wang, Z.C. and Wong, R.C.K. (2010), "Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses", Geomech. Eng., 2(4), 303-319. http://doi.org/10.12989/gae.2010.2.4.303.   DOI
10 Yang, Z.X., Jardine, R.J., Zhu, B.T., Foray, P. and Tsuha, C.H.C. (2010), "Sand grain crushing and interface shearing during displacement pile installation in sand", Geotechnique, 60(6), 469-482. https://doi.org/10.1680/geot.2010.60.6.469.   DOI
11 Hyodo, M., Wu, Y., Kajiyama, S., Nakata, Y. and Yoshimoto, N. (2017), "Effect of fines on the compression behaviour of poorly graded silica sand", Geomech. Eng., 12(1), 127-138. https://doi.org/10.12989/gae.2017.12.1.127.   DOI
12 Janbu, N. (1969), "The resistance concept applied to deformation of soils", Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Mexico,
13 Krost, K., Gourvenec, S.M. and White, D.J. (2011), "Consolidation around partially embedded seabed pipelines", Geotechnique, 61(2), 167-173. https://doi.org/10.1680/geot.8.T.015.   DOI
14 Nakata, Y., Hyodo, M., Hyde, A., Kato, Y. and Murata, H. (2001), "Microscopic particle crushing of sand subjected to high pressure one-dimensional compression", Japanese Geotechnical Society, Tokyo, Japan.
15 Chong, S.H. and Santamarina, J.C. (2016), "Soil compressibility models for a wide stress range", J. Geotech. Geoenviron. Eng., 142(6), 06016003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001482.   DOI
16 Atkinson, J.H., Richardson, D. and Woods, R.I. (1986), "Technical note on the determination of tangent stiffness parameters from soil test data", Comput. Geotech., 2(3), 131-140. https://doi.org/10.1016/0266-352X(86)90023-6.   DOI
17 Chong, S.H. (2014), "The effect of subsurface mass loss on the response of shallow foundations", Ph.D Disseration, Georgia Institute of Technology, Atlanta, Georgia, U.S.A.
18 Boone, S.J. (2010), "A critical reappraisal of "preconsolidation pressure" interpretations using the oedometer test", Can. Geotech. J., 47(3), 281-296. https://doi.org/10.1139/T09-093.   DOI
19 Casagrande, A. (1936), "The determination of the preconsolidation load and its practical significance", Proceedings of the 1st International Soil Mechanics and Foundation Engineering Conference, Cambridge, Massachusetts, U.S.A., June.
20 Cho, G.C., Dodds, J. and Santamarina, J.C. (2006), "Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1474).   DOI
21 Clementino, R.V. (2005), "Discussion: An oedometer test study on the preconsolidation stress of glaciomarine clays", Can. Geotech. J., 42(3), 972-974. https://doi.org/10.1139/t05-010.   DOI
22 Becker, D.E., Crooks, J.H.A., Been, K. and Jefferies, M.G. (1987), "Work as a criterion for determining in situ and yield stresses in clays", Can. Geotech. J., 24(4), 549-564. https://doi.org/10.1139/t87-070.   DOI
23 Yun, T. and Santamarina, J. (2005), "Decementation, softening, and collapse: Changes in small-strain shear stiffness in loading", J. Geotech. Geoenviron. Eng., 131(3), 350-358. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350).   DOI
24 Houlsby, G.T., Kelly, R.B., Huxtable, J. and Byrne, B.W. (2005), "Field trials of suction caissons in clay for offshore wind turbine foundations", Geotechnique, 55(4), 287-296. https://doi.org/10.1680/geot.2005.55.4.287.   DOI