• Title/Summary/Keyword: Early strength agent

Search Result 95, Processing Time 0.021 seconds

An Experimental Study on the Early Prediction of Concrete Strength by Accelerating Agent (급속경화에 의한 콘크리트 강도의 조기 판정에 관한 실험적 연구)

  • 김창교;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.9-13
    • /
    • 1989
  • The purpose of this paper is to propose a method predetermining the 28-days strength of concrete. In this paper, it was predicted by regression analysis of the relation between 7-days and 28-days strength of fresh concrete and the strength of concrete early cured at $70^{\circ}C$ for rour hours after wet screening and addition of accelerating agent. It is concluded that the formula predeterming the 28-days strength of concrete using 25M/M rubbles from Sam-Cheok and sands from Yon-Gok, by the strength of concrete early cured for 4 hours is Y=-11.45 + 3.686X, where the coefficient of determination of regression-expression is r2=0.938, S=17.94(kg/$\textrm{cm}^2$).

  • PDF

Performance Improvement of High Performance Shrinkage Reducing Agent using Early Strength Improving Agent (조기강도 개선제를 활용한 고성능 수축저감제의 성능 개선)

  • Park, Jong-Pil;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.296-302
    • /
    • 2016
  • Studies aimed at reducing the occurrence of cracks by the shrinkage of concrete are in demand because the repair and reinforcement for cracks caused by declining concrete durability costs the user to maintain the concrete structure. In particular, in underground power facilities for power transmission, the cost is a heavy burden to repair and reinforce. For this reason, underground power facilities demanded effective methods for crack reduction at the engineering design step. This study, as a part of the development of shrinkage reducing agent for low shrinkage concrete on underground power facilities, investigated TEA to complement the shrinkage reducing agent to improve the early strength of concrete. In the case of TEA 3% as a shrinkage reducing agent, the early strength was improved significantly, and the shrinkage reducing effect was excellent. In addition, TEA 3.0 % and the shrinkage reducing agent 2.0 % showed excellent shrinkage property and compressive strength. On the other hand, more study of shrinkage reducing materials, including performance reviews on the shrinkage reducing materials with variable factors and type of materials, will be needed to generalize these results.

Characteristics of concrete intensity using high early strength AE water reducing agent (조강형 AE감수제를 사용한 콘크리트의 강도발현 특성)

  • Kim, Jung-Tai;Kim, Seung-Han;Jang, Seck-Soo;Jung, Yong-Wook;Yeo, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.793-796
    • /
    • 2008
  • Recently early strength concrete has been required for economical assurance and the prevention of frost damage in winter through air reduction in construction of concrete structures. This study presented the optimum condition revealing compressive strength 5MPa which has the possibility of removal of form in 24 hours, and researched the changes of unit weight of cement types of high early strength AE water reducing agents, characteristic of compressive strength expression as cure temperature conditions and slump or airspace. Test results showed at $15^{\circ}C$ with compressive strength of 5MPa that premature removal of form was possible in case of using highly early strength PC water reducing agent with unit weight of cement 360 ; 22hours faster than 10, unit weight 360 ; 20hours faster than 7, unit weight 390 ; 18 hours faster than 4 comparing with OP water reducing agent. And at $5^{\circ}C$ in case of using highly early strength PC water reducing agent with unit weight of cement 330 ; 32hours faster than 10, unit weight 360 ; 30hours faster than 7, unit weight390 ; 27hours faster than 4 comparing with OP water reducing agent. Therefore as the temperature rises $10^{\circ}C$, compressive strength of 5MPa reaching hour shortens 10 hours.

  • PDF

Characteristics of Early Strength and Velocity Development in High Strength Concrete Containing Fly Ash (플라이애시를 함유한 고강도 콘크리트의 조기 강도와 속도 발현 특성)

  • 이회근;윤태섭;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.43-48
    • /
    • 2001
  • The use of fly ash in cement and concrete industries has many benefits including engineering, economic, and ecological aspects. However, it has a disadvantage of low strength development, especially at early ages. In this study, in order to overcome this problem, the early strength accelerating agent($NA_{2}$ $SO_{4}$) was selected and applied to the production of high strength concrete(HSC) containing fly ash. It was found that the compressive strength of fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ has greater than that of concrete containing fly ash only until 7 days after casting. From the microstructural point of view, ettringite increased and pores decreased in fly ash concrete incorporating TEX>$NA_{2}$ $SO_{4}$ , leading to the development of early age strength. It was also found that the velocity vs. strength relationship of HSC is considerably different from that of low-strength concrete(LSC). Therefore, in order to predict early age strength of HSC, a estimation equation different from that for LSC is needed.

  • PDF

A Study for the Quality Improvement of Concrete Using Fly-Ash High Volume (플라이애시를 다량 치환한 콘크리트의 품질향상에 관한 연구)

  • Lee, Joung-Ah;Park, Jong-Ho;Chung, Yoong;Park, Bong-Soon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.601-604
    • /
    • 2008
  • This study as using admixture (G), high early strength agent, calcium hydroxide {a(OH)2} and fine particle cement, etc which have been newly developed for the purpose of quality improvements like the improvement of early strength of concrete that the FA was substituted by 20%, etc, reviewed the possibility of the utilization in the great quantity and the results are summarized as the followings. Slump loss by the kind of mixing material of high early strength agent and Ca(OH)$_2$ showed the smaller width of decrease than that of plain to appear the improved results and fine particle cement and G admixture showed the large slump loss. Air contents were appeared to satisfy the target air contents at all mixing materials. Regarding the compressive strength of the concrete by the kind of mixing material, G admixture was appeared to be highest all on aging 3 days, 7days and 28days at the initial strength. And fine particle cement and high early strength agent showed higher strength increase rate on aging 3days than plain but showed that the increase of strength becomes gradually dulled as aging is increased. And Ca(OH)$_2$ had almost no effect.

  • PDF

A Site Application of the Revealing High Early Strength Concrete (조기강도 발현형 콘크리트의 현장 적용성 연구)

  • Kim Gyu Dong;Lee Seung Hoon;Sohn Yu Shin;Kim Han Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.560-563
    • /
    • 2004
  • This study reports the site application of concrete using AE Water Reducing Agent of Early-Strength Type. According to the lab test results, we have made plans of batch plant pilot test, and we have analyzed the erly aged compressive strength and workability of the concrete. We applied the early-strength development concrete to the construction site. We accomplished the slump test in order to evaluate the workablity and air contents, we made site curing mold to evaluate the early strength of members. As a result, we judgeed the superior property of early strength development of the concrete, and thought that we can reduce the time of form stripping more $40\%$ than ordinary strength concrete. We thought that we can reduce the term of works and finally we can accomplish the economical construction.

  • PDF

The Study On The Early Age Strength of Blast Furnace Slag Cement Adding a Large Amount of Fly Ash (플아이애쉬를 다량으로 혼입한 고로슬래그 시멘트의 초기강도에 관한연구)

  • Piao, Ying Mo;Huang, Yin Tae;So, Seung Young;Soh, Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.231-236
    • /
    • 2000
  • In this study, to present the use of the blase furnace slag fly ash derived from a large amount of the industrial products with the early strength reduction of it prevented, the initial strength is measured after a large quantity of fly ash and the required stimulus agent for the high development of the initial strength was added in blast furnace slag cement. As the results, in spite of the much addition of fly ash in blast furnace slag, the long-age strength of blast furnace slag cement was able to be improved by a proper amount of stimulus agent, and was as high as that of ordinary portland cement.

  • PDF

A Fundamental Study on Physical Properties of Ultra High-Strength Concrete using Expansion Agent (팽창제를 사용한 초고강도 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Park, Hyun;Han, Da-hee;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.85-88
    • /
    • 2008
  • As super-high-strength concrete uses a large amount of binder, there is an autogenous shrinkage strain larger than dry shrinkage and it degrades the quality of structures. Thus, we need a technology to minimize the shrinkage strain of super-high-strength concrete. Accordingly, the present study prepared super-high-strength concrete with design strength of over 100MPa and, using an embedded gauge, measured the shrinkage strain of free shrinkage specimens for super-high-strength concrete containing expansion agent. According to the results of this study, the expansion rate of concrete increased in the early stage due to the admixture of expansion agent, but the shrinkage rate went down with the lapse of time. The effect of the admixture of expansion agent on compressive strength appeared insignificant. Further research shall be made on different kinds of expansion agents and various mixture ratios for basic analysis to reduce autogenous shrinkage of super-high-strength concrete.

  • PDF

An Experiment on the Structure Application of Cold Weather Concreting Using Anti-freeze Agent and Insulating Form (내한제 및 단열거푸집을 이용한 한중콘크리트의 구조체 적용 실험)

  • 김경민;손성운;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.21-26
    • /
    • 2002
  • This paper is intended to verify the efficiency of anti-freeze agent and insulating form by analyzing the temperature history and the property of strength-increase about the concrete that is placed in the insulating form and normal form, using new type anti-freeze agent in batcher plant According to the results about the temperature history, while the lowest temperature shows 3$^{\circ}C$ in case of normal concrete + euroform, 4$^{\circ}C$ in case of normal concrete + insulating form, it shows 6$^{\circ}C$ in anti-freeze agent + the insulating form, so the effect is most favorable. The compressive strength with mixing anti-freeze agent or not, shows high in order of standard curing, structure-managing and open air-placed specimen and the concrete mixing anti-freeze agent shows the highest compressive strength-increase.

  • PDF

The Properties of Early Strength of Concrete Containing Slag and Fly-ash for In-situ Application (현장 적용을 위한 3성분계 콘크리트의 조기강도 특성)

  • Jung Chul-Hee;Kim Kyoung-Min;Lee Jin-Woo;Bae Yeon Ki;Lee Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.497-500
    • /
    • 2005
  • This study was performed to evaluate the characteristics which are slump, air content and time of set in fresh concrete and compressive strength of hardened concrete containing slag powder and fly-ash. Replacement rate of FA is fixed on 10$\%$ and replacement rate of slag powder are 0$\%$, 20$\%$ and 30$\%$. Also AE water-reducing agents(standard type, accelerating type) are used. The results were as follows. (1)Slump flow of concrete using AE water-reducing agents is similar. Flowability is incresed when replacement rate of slag powder is increased due to slag powder's ball bearing reaction.(2)Time of set of concrete using accelerating type agent is more faster than that of concrete using standard type agent because of ettringite generation that promote setting.(3)Early strength of three-component concrete using accelerating type agent is higher than that using standard type agent. Therefore cumulative pore is reduced due to ettringite

  • PDF