• Title/Summary/Keyword: E-M algorithm

Search Result 295, Processing Time 0.03 seconds

A Study of Compensation Algorithm for Localization based on Equivalent Distance Rate using Estimated Location Coordinator Searching Scheme (예상 위치좌표 탐색기법을 적용한 균등거리비율 기반 위치인식 보정 알고리즘 연구)

  • Kwon, Seong-Ki;Lee, Dong-Myung;Lee, Chang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3571-3577
    • /
    • 2010
  • The estimated location coordinator exploration scheme and the E&E(Equivalent distance rate & Estimated location coordinator exploration) compensation algorithm for localization is proposed, and the performance of the E&E is analyzed in this paper. The proposed scheme is adapted to the AEDR(Algorithm for localization using the concept of Equivalent Distance Rate). From several experiments, it is confirmed that the performance of the localization compensation in SDS-TWR is improved from 0.60m to 0.34m in four experimental scenarios, and the performance of the localization compensation ratio of the E&E is also better than that of the AEDR as a level of maximum 15%. It can be thought that the proposed localization compensation algorithm E&E can be sufficiently applicable to various localization applications because the performance of the localization error rate of the E&E is measured as less than 1m in 99% of the total performance experiments.

An Efficient Algorithm for Computing Multiplicative Inverses in GF($2^m$) Using Optimal Normal Bases (최적 정규기저를 이용한 효율적인 역수연산 알고리즘에 관한 연구)

  • 윤석웅;유형선
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.1
    • /
    • pp.113-119
    • /
    • 2003
  • This paper proposes a new multiplicative inverse algorithm for the Galois field GF (2/sup m/) whose elements are represented by optimal normal basis type Ⅱ. One advantage of the normal basis is that the squaring of an element is computed by a cyclic shift of the binary representation. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. The new algorithm is more suitable for implementation than conventional algorithm.

  • PDF

Maximum Degree Vertex Central Located Algorithm for Bandwidth Minimization Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.41-47
    • /
    • 2015
  • The bandwidth minimization problem (BMP) has been classified as NP-complete because the polynomial time algorithm to find the optimal solution has been unknown yet. This paper suggests polynomial time heuristic algorithm is to find the solution of bandwidth minimization problem. To find the minimum bandwidth ${\phi}^*=_{min}{\phi}(G)$, ${\phi}(G)=_{max}\{{\mid}f(v_i)-f(v_j):v_i,v_j{\in}E\}$ for given graph G=(V,E), m=|V|,n=|E|, the proposed algorithm sets the maximum degree vertex $v_i$ in graph G into global central point (GCP), and labels the median value ${\lceil}m+1/2{\rceil}$ between [1,m] range. The graph G is partitioned into subgroup, the maximum degree vertex in each subgroup is set to local central point (LCP), and we adjust the label of LCP per each subgroup as possible as minimum distance from GCP. The proposed algorithm requires O(mn) time complexity for label to all of vertices. For various twelve graph, the proposed algorithm can be obtains the same result as known optimal solution. For one graph, the proposed algorithm can be improve on known solution.

New Enhanced Degree Computationless Modified Euclid's Algorithm and its Architecture for Reed-Solomon decoders (Reed-Solomon 복호기를 위한 새로운 E-DCME 알고리즘 및 하드웨어 구조)

  • Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.820-826
    • /
    • 2007
  • This paper proposes an enhanced degree computationless modified Euclid's(E-DCME) algorithm and its architecture for Reed-Solomon decoders. The proposed E-DCME algorithm has shorter critical path delay that is $T_{mult}+T_{add}+T_{mux}$ compared with the existing modified Euclid's algorithm and the degree computationless modified Euclid's(DCME) algorithm since it uses new initial conditions. The proposed E-DCME architecture employing a systolic array requires only 2t-1 clock cycles to solve the key equation without initial latency. In addition, the E-DCME architecture consisting of 3t basic cells has regularity and scalability since it uses only one processing element. The E-DCME architecture using the $0.18{\mu}m$ Samsung standard cell library consists of 18,000 gates.

Design of 2-D Separable Denominator Digital Filters based on the reduced Dimension Decomposition of Frequency Domain Specification (주파수영역 설계명세조건의 저차원분해를 이용한 2차원 디지털 필터의 설계)

  • 문용선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1346-1353
    • /
    • 2001
  • This paper presents an algorithm for the design of 2 dimension separable denominator digital filter(SDDF). The proposed algorithm is based on the reduced dimensional decomposition not only 2 dimension SDDF's but also of given 2 dimension specification. The frequency domain design of 2 dimension separable denominator digital filters based on the reduced dimensional decomposition can be realized when the given 2 dimension frequency specification are optimally decomposed into a pair of 1 dimension digital filter specification via singular value decomposition. the algorithm is computationally efficient and numerically stable. In case of the low pass filter, the approximation error of the proposed design algorithm is $e_{m}$=5.17, $e_{r1}$ =8.78, $e_{r2}$=7.34, while in case of band pass filter, the approximation error is $e_{m}$=13.00, $e_{r1}$=62.76, $e_{r2}$=62.7676.7676

  • PDF

Distributed Algorithm for Updating Minimum-Weight Spanning Tree Problem (MST 재구성 분산 알고리즘)

  • Park, Jeong-Ho;Min, Jun-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.1 no.2
    • /
    • pp.184-193
    • /
    • 1994
  • This paper considers the Updating Minimum-weight Spanning Tree Problem(UMP), that is, the problem to update the Minimum-weight Spanning Tree(MST) in response to topology change of the network. This paper proposes the algorithm which reconstructs the MST after several links deleted and added. Its message complexity and its ideal-time complexity are Ο(m+n log(t+f)) and Ο(n+n log(t+f)) respectively, where n is the number of processors in the network, t(resp.f) is the number of added links (resp. the number of deleted links of the old MST), And m=t+n if f=Ο, m=e (i.e. the number of links in the network after the topology change) otherwise. Moreover the last part of this paper touches in the algorithm which deals with deletion and addition of processors as well as links.

  • PDF

Efficient Randomized Parallel Algorithms for the Matching Problem (매칭 문제를 위한 효율적인 랜덤 병렬 알고리즘)

  • U, Seong-Ho;Yang, Seong-Bong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.10
    • /
    • pp.1258-1263
    • /
    • 1999
  • 본 논문에서는 CRCW(Concurrent Read Concurrent Write)와 CREW(Concurrent Read Exclusive Write) PRAM(Parallel Random Access Machine) 모델에서 무방향성 그래프 G=(V, E)의 극대 매칭을 구하기 위해 간결한 랜덤 병렬 알고리즘을 제안한다. CRCW PRAM 모델에서 m개의 선을 가진 그래프에 대해, 제안된 매칭 알고리즘은 m개의 프로세서 상에서 {{{{ OMICRON (log m)의 기대 수행 시간을 가진다. 또한 CRCW 알고리즘을 CREW PRAM 모델에서 구현한 CREW 알고리즘은 OMICRON (log^2 m)의 기대 수행 시간을 가지지만,OMICRON (m/logm) 개의 프로세서만을 가지고 수행될 수 있다.Abstract This paper presents simple randomized parallel algorithms for finding a maximal matching in an undirected graph G=(V, E) for the CRCW and CREW PRAM models. The algorithm for the CRCW model has {{{{ OMICRON (log m) expected running time using m processors, where m is the number of edges in G We also show that the CRCW algorithm can be implemented on a CREW PRAM. The CREW algorithm runs in {{{{ OMICRON (log^2 m) expected time, but it requires only OMICRON (m / log m) processors.

Machine learning-based design automation of CMOS analog circuits using SCA-mGWO algorithm

  • Vijaya Babu, E;Syamala, Y
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.837-848
    • /
    • 2022
  • Analog circuit design is comparatively more complex than its digital counterpart due to its nonlinearity and low level of abstraction. This study proposes a novel low-level hybrid of the sine-cosine algorithm (SCA) and modified grey-wolf optimization (mGWO) algorithm for machine learning-based design automation of CMOS analog circuits using an all-CMOS voltage reference circuit in 40-nm standard process. The optimization algorithm's efficiency is further tested using classical functions, showing that it outperforms other competing algorithms. The objective of the optimization is to minimize the variation and power usage, while satisfying all the design limitations. Through the interchange of scripts for information exchange between two environments, the SCA-mGWO algorithm is implemented and simultaneously simulated. The results show the robustness of analog circuit design generated using the SCA-mGWO algorithm, over various corners, resulting in a percentage variation of 0.85%. Monte Carlo analysis is also performed on the presented analog circuit for output voltage and percentage variation resulting in significantly low mean and standard deviation.

Chromatic Number Algorithm for Exam Scheduling Problem (시험 일정 계획 수립 문제에 관한 채색 수 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.111-117
    • /
    • 2015
  • The exam scheduling problem has been classified as nondeterministic polynomial time-complete (NP-complete) problem because of the polynomial time algorithm to obtain the exact solution has been unknown yet. Gu${\acute{e}}$ret et al. tries to obtain the solution using linear programming with $O(m^4)$ time complexity for this problem. On the other hand, this paper suggests chromatic number algorithm with O(m) time complexity. The proposed algorithm converts the original data to incompatibility matrix for modules and graph firstly. Then, this algorithm packs the minimum degree vertex (module) and not adjacent vertex to this vertex into the bin $B_i$ with color $C_i$ in order to exam within minimum time period and meet the incompatibility constraints. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m) time complexity for exam scheduling problem, and gets the same solution with linear programming.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.