• Title/Summary/Keyword: E/P regulator

Search Result 83, Processing Time 0.045 seconds

The Overexpression of Subtilisin Enzyme Using Mutations on Transition State Regulatory Proteins of AprE Promoter and Development of Bacillus subtilis Host System (AprE Promoter전이상태 조절인자 변이주를 이용한 공업적 효소의 과발현과 고초균 숙주계의 개발)

  • 류성호;박승환김병기
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.8-14
    • /
    • 1996
  • Bacillus subtillis strains with transition state regulator mutations and a spore mutation were developed for the overexpression of apsE and for the enhancement of expression level. Among the many regulator genes, degU and hpr were chosen as a representative positive and negative regulator for the aprE, respectively. Spo II G was used for the construction of asporogeneous strains. All the mutants were constructed from two protease-deleted strain DB104 and the apsE gene was transformed with an integration vector pMK101. DB104(deg$U^h$(32) $his^+$)::pMK101(Cm) and DB104($\Delta$her(Em))::pMKl01(Cm) show 7-fold and about 2-fold increase in aprE expression level, respectively. But the effect of transition state regulator mutation on the aprE expression was diminished when the integrated aprE gene was amplified by the high concentration of chloramphenicol, i. e. 30 $\mu\textrm{g}$/ml. DB104($\Delta$spoIIG(Pm) degUh(32) his+)::pMK101(Cm) and DB104($\Delta$spoIIG(Pm) $\Delta$hpr(Em))::pMK101 double mutant show 10-fold and 3-fold increase in aprE expression level, respectively. The results suggest that sporulation mutation and transition state regulator mutation have independent and additive effect on the aprE expression, and the same gene dosage effect on the transition state regulator mutation was also identified.

  • PDF

A 50-mA 1-nF Low-Voltage Low-Dropout Voltage Regulator for SoC Applications

  • Giustolisi, Gianluca;Palumbo, Gaetano;Spitale, Ester
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.520-529
    • /
    • 2010
  • In this paper, we present a low-voltage low-dropout voltage regulator (LDO) for a system-on-chip (SoC) application which, exploiting the multiplication of the Miller effect through the use of a current amplifier, is frequency compensated up to 1-nF capacitive load. The topology and the strategy adopted to design the LDO and the related compensation frequency network are described in detail. The LDO works with a supply voltage as low as 1.2 V and provides a maximum load current of 50 mA with a drop-out voltage of 200 mV: the total integrated compensation capacitance is about 40 pF. Measurement results as well as comparison with other SoC LDOs demonstrate the advantage of the proposed topology.

Phosphate Deficiency Stress Response Mediated by Pho Regulon in Bacillus subtilis (Bacillus subtilis의 Pho Regulon을 통한 인산 결핍 스트레스 반응)

  • Park, Jae-Yong
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Bacillus subtilis PhoP-PhoR two-component system (TCS) senses phosphate deficiency conditions, and then controls expression of the Pho regulon to prolong survival. The sensor histidine kinase, PhoR, is autophosphorylated and transfers the phosphate to the response regulator, PhoP. Phosphorylated PhoP (PhoP~P) binds to repeated 6-bp consensus PhoP binding sequences of Pho regulon promoters and activates or represses gene expression. Pho signal transduction systems are part of interconnected signal transduction network involving at least three TCSs (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), a global carbon metabolism regulator (CcpA), and transition state regulators (AbrB, ScoC). In addition, PhoP-PhoR TCS is cross related with YycF-YycG TCS by cross-regulation. While indescribable progress has been made in understanding phosphate deficiency stress response through refined expression of the Pho regulon in the recent past years, many important questions still remain. Solving these questions may provide important information for application study using B. subtilis.

Development of a pneumatic actuator for Micro-Positioning control (미세 변위제어를 위한 공압 액추에이터 개발)

  • 손영선;이동주;이종옥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.429-434
    • /
    • 2002
  • In order to improve the accuracy in the field of simiconductor and LCD research equipment, the demand of XYZ stage which is possible to control X axis, Y axis and Z axis has been increased steadly in place of the existing XY stage which is only practicable to X & Y axis positioning control. This paper presents a new pneumatic actuator for Micro-positioning control in the XYZ stage. Air pressure in a pneumatic actuator is controlled by the E/P Regulator. The control range of pneumatic actuator is about 100 micro-meters and it's construction concept is easy to apply a practical state

  • PDF

Overexpression of Clast4 Reduces Cell Proliferation (Clast4의 과발현에 의한 세포 증식의 감소)

  • Kang, Minkook;Han, Seung Jin
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1144-1150
    • /
    • 2014
  • The eIF4E protein is the key regulator of translation initiation. The interaction of eIF4E with eIF4G triggers the translation of mRNA, and several proteins interrupt this association to modulate translation. Human 4E-T is one of the eIF4E-binding partners that represses the translation of bound mRNAs, and it is involved in the transport of eIF4E to processing bodies (P-bodies). Although Clast4, the mouse homolog of human 4E-T, might play critical roles in the regulation of translation, its properties are not well known. In this report, we deciphered the properties of Clast4 by determining its phosphorylation state, binding to eIF4E, and effects of overexpression on cell proliferation. Clast4 was phosphorylated by protein kinase A (PKA) in vivo on several residues of its amino terminus. Nevertheless, the PKA phosphorylation of Clast4 appeared to have no effect on either its eIF4E-binding ability or localization. Clast4 interacted with eIF4E1 and CPEB. The conserved eIF4E-binding sequence in Clast4, $YXXXXL_{\phi}$, was important for binding eIF4E1A but not eIF4E1B. Similar to that of another well-known eIF4E regulator, the eIF4E binding protein (4E-BP), the overexpression of Clast4 decreased cell proliferation. These results suggest that Clast4 acts as a global translation regulator in cells.

AVR controller design of synchronous generator (동기발전기의 자동전압조정장치 제어기 설계)

  • Lee, J.M.;Kim, M.H.;Lee, J.H.;Park, Y.H.;Lim, I.H.;Goo, K.M.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.167-170
    • /
    • 1993
  • This paper deals with AVR(Automatic Voltage Regulator) control1or design of synchronous generator adapting AC indirect excitation system. The simulation results are presented in frequency and tine domain for two plants(A and B). Try and error method for compensator design is used.

  • PDF

Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6

  • Kim, Chul Hong;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.220-227
    • /
    • 2014
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.

Iron Chelator-Inducible Expression System for Escherichia coli

  • Lim, Jae-Myung;Hong, Mi-Ju;Kim, Seong-Hun;Oh, Doo-Byoung;Kang, Hyun-Ah;Kwon, Oh-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1357-1363
    • /
    • 2008
  • The $P_{entC}$ promoter of the entCERA operon encoding enzymes for enterobactin biosynthesis in Escherichia coli is tightly regulated by the availability of iron in the culture medium. In iron-rich conditions, the $P_{entC}$ promoter activity is strongly repressed by the global transcription regulator Fur (ferric uptake regulator), which complexes with ferrous ions and binds to the Fur box 19-bp inverted repeat. In this study, we have constructed the expression vector pOS2 containing the $P_{entC}$ promoter and characterized its repression, induction, and modulation by quantifying the expression of the lacZ reporter gene encoding $\beta$-galactosidase. $\beta$-Galactosidase activities of E. coli transformants harboring pOS2-lacZ were highly induced in the presence of divalent metal ion chelators such as 2,2'-dipyridyl and EDTA, and were strongly repressed in the presence of excess iron. It was also shown that the basal level $\beta$-galactosidase expression by the $P_{entC}$ promoter was drastically decreased by incorporating the fur gene into the expression vector. Since the newly developed iron chelator-inducible expression system is efficient and cost-effective, it has wide applications in recombinant protein production.

Amygdalin Modulates Cell Cycle Regulator Genes in Human Chronic Myeloid Leukemia Cells

  • Park, Hae-Jeong;Baik, Haing-Woon;Lee, Seong-Kyu;Yoon, Seo-Hyun;Zheng, Long-Tai;Yim, Sung-Vin;Hong, Seon-Pyo;Chung, Joo-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.159-165
    • /
    • 2006
  • To determine the anticancer effect of D-amygdalin (D-mandelinitrole-${\beta}$-D-gentiobioside) in human chronic myeloid leukemia cells K562, we profiled the gene expression between amygdalin treatment and control groups. Through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, the cytotoxicity of D-amygdalin was $57.79{\pm}1.83%$ at the concentration of 5 mg/mL for 24 h. We performed cDNA microarray analysis and compared the gene expression profiles between D-amygdalin (5 mg/mL, 24 h) treatment and control groups. Among the genes changed by D-amygdalin, we paid attention to cell cycle-related genes, and particularly cell cycle regulator genes; because arrest of cell cycle processing was ideal tactic in remedy for cancer. In our data, expressions of cyclin-dependent kinase inhibitor 1B (p27, Kip1) (CDKN1B), ataxia telangiectasia mutated (includes complementation groups A, C, and D) (ATM), cyclin-dependent kinase inhibitor 1C (p57, Kip2) (CDKN1C), and CHK1 checkpoint homolog (CHEK1, formally known as CHK1) were increased, while expressions of cyclin-dependent kinase 2 (CDK2), cell division cycle 25A (CDC25A), and cyclin E1 (CCNE1) were decreased. The pattern of these gene expressions were confirmed through RT-PCR. Our results showed that D-amygdalin might control cell cycle regulator genes and arrest S phase of cell cycle in K562 cells as the useful anticancer drug.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.