Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.02.2014.0012

Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6  

Kim, Chul Hong (Department of Floriculture, Chunnam Techno University)
Kim, Yong Hwan (Korea Institute of Planning & Evaluation for Technology on Food, Agriculture, Forestry & Fisheries)
Anderson, Anne J. (Department of Biology, Utah State University)
Kim, Young Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Publication Information
The Plant Pathology Journal / v.30, no.2, 2014 , pp. 220-227 More about this Journal
Abstract
The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.
Keywords
induced systemic resistance; proteomic analysis; tryptophan metabolism;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Oh, S. A., Kim, J. S., Han, S. H., Park, J. Y., Dimkpa, C., Edlund, C., Anderson, A. J. and Kim, Y. C. 2013a. The GacS-regulated sigma factor RpoS governs production of several factors involved in biocontrol activity of the rhizobium Pseudomonas chlororaphis O6. Can. J. Microbiol. 59:556-562.   DOI   ScienceOn
2 Kang, B. R., Cho, B. H., Anderson, A. J. and Kim, Y. C. 2004. The global regulator GacS of a biocontrol bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137-143.   DOI   ScienceOn
3 Kang, B. R., Han, S. H., Zdor, R. E. Anderson, A. J., Spencer, M., Yang, K. Y., Kim, Y. H., Lee, M. C., Cho, B. H. and Kim. Y. C. 2007. Inhibition of seed germination and induction of systemic disease resistance by Pseudomonas chlororaphis O6 requires phenazine production regulated by the global regulator, GacS. J. Microbiol. Biotechnol. 17:586-593.
4 Kim, J. S., Kim, Y. H., Park, J. Y., Anderson, A. J. and Kim, Y. C. 2014b. The global regulator GacS regulates biofilm formation in Pseudomonas chlororaphis O6 differently with carbon source. Can. J. Microbiol. 60:133-138.   DOI   ScienceOn
5 Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62:746-751.   DOI
6 Elhai, J. and Wolk, C. P. 1988. A versatile class of positiveselection vectors based on the nonviability of palindromecontaining plasmids that allows cloning into long polylinkers. Gene 68:119-138.   DOI   ScienceOn
7 Anderson, A. J., Britt, D. W., Johnson, J., Narisimhan, G. and Rodriguez. 2005. Physicochemical parameters influencing the of Pseudomonas chlororaphis O6. Water Sci. Tech. 52:21-25.
8 Bateman, A. and Bycroft, M. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglyosylate D (MltD). J. Mol. Biol. 299:1113-1119.   DOI   ScienceOn
9 Bitter, W. 2003. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol. 179:307-314.   DOI
10 Brencic, A., McFarland, K. A., McManus, H. R., Castang, S., Mogno, I., Dove, S. L. and Lory, S. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73:434-445.   DOI   ScienceOn
11 Briggs, G. S., Yu, J., Mahdi, A. A. and Lloyd, R. G. 2010. The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA. Nucleic Acids Res. 38:6433-6446.   DOI
12 Cho, S. M., Kang, B. R., Kim, J. J. and Kim, Y. C. 2012. Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol. J. 28:202-206.   DOI   ScienceOn
13 Ananthaswamy, H. N. and Eisenstark, A. 1977. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J. Bacteriol. 130:187-191.
14 Park, J. Y., Oh, S. A., Anderson, A. J., Neiswender, J., Kim, J. C. and Kim, Y. C. 2011. Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett. Appl. Microbiol. 52:532-537.   DOI   ScienceOn
15 Raaijmakers, J. M., Vlami, M. and de Souza, J. T. 2002. Antibiotic production by bacterial biocontrol agents. Anton. Leeuw. Int. J. G. 81:537-547.   DOI   ScienceOn
16 Wessel, A. K., Liew, J., Kwon, T., Marcotte, E. M. and Whiteley, M. 2013. Role of Pseuomonas aeruginosa peptidoglycanassociated outer membrane proteins in vesicle formation. J. Bacteriol. 195:213-219.   DOI   ScienceOn
17 Selin, C., Fernando, W.G., and de Kievit, T. 2012. The PhzI/PhzR quorum-sensing system is required for pyrrolnitrin and phenazine production, and exhibits cross-regulation with RpoS in Pseudomonas chlororaphis PA23. Microbiol. 158: 896-907.   DOI   ScienceOn
18 Oh, S. A., Kim, J. S., Park, J. Y., Han, S. H., Dimkpa, C., Anderson, A. J. and Kim, Y. C. 2013b. The RpoS sigma factor negatively regulates production of IAA and siderophore in a biocontrol rhizobacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 29:323-329.   DOI   ScienceOn
19 Wang, D., Lee, S.H., Seeve, C., Yu, J. M., Pierson, L. S. 3rd, and Pierson, E. A. 2013. Roles of the Gac-Rsm pathway in the regulation of phenazine biosynthesis in Pseudomonas chlororaphis 30-84. MicrobiologyOpen 2:505-524.   DOI
20 Kim, J. S., Kim, Y. H., Anderson, A. J. and Kim, Y. C. 2014a. The sensor kinase GacS negatively regulates flagellar formation and motility in a biocontrol bacterium, Pseudomonas chlororaphis O6. Plant Pathol. J. 30:215-219.   DOI   ScienceOn
21 Miller, C. D., Kim, Y. C. and Anderson, A. J. 1997. Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida. J. Bacteriol. 179:5241-5245.   DOI
22 Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319.   DOI   ScienceOn
23 Crespo, M. C. A. and Valverde, C. 2009. A single mutation in the oprF mRNA leader confers strict translational control by the Gac/Rsm system in Pseudomonas fluorescens CHA0. Curr. Microbiol. 58:182-188.   DOI
24 Dubis, C., Keel, C. and Haas, D. 2007. Dialogues of root-colonizing biocontrol pseudomonads. Eur. J. Plant Pathol. 119:311-328.   DOI
25 Fito-Boncompte, L., Chapalain, A., Bouffartigues, E., Chaker, H., Lesouhaitier, O., Gicquel, G. Bazire, A., Madi, A., Connil, N., Veron, W., Taupin, L., Toussaint, B., Cornelis, P., Wei, Q., Shioya, K., Deziel, E., Feuilloley, M. G. J., Orange, N., Dufour, A. and Chevalier, S. 2011. Full virulence of Pseudomonas aeruginosa requires OprF. Infect. Immun. 79:1176-1186.   DOI   ScienceOn
26 Han, S. H., Anderson, A. J., Yang, K. Y., Cho, B. H., Kim, K. Y., Lee, M. C., Kim, Y. H. and Kim, Y. C. 2006. Multiple determinants influence root colonization and induction of induced systemic resistance by Pseudomonas chlororaphis O6. Mol. Plant Pathol. 7:463-472.   DOI   ScienceOn
27 Bloemberg, G. V. and Lugtenberg, B. J. J. 2001. Multiple basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4:343-350.   DOI   ScienceOn
28 Zuccotti, S., Zanardi, D., Rosano, C., Sturla, L., Tonetti, M. and Bolognesi, M. 2001. Kinetic and crystallographic analyses support a sequential-ordered Bi Bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. J. Mol. Biol. 313:831-843.   DOI   ScienceOn
29 Hassan, K. A., Johnson, A., Shaffer, B. T., Ren, Q., Kidarsa, T. A., Elbourne, L. D. H., Hartney, S., Duboy, R., Goebel, N. C., Zabriskie, T. M., Paulsen, I. T. and Loper, J. E. 2010. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ. Microbiol. 12:899-915.   DOI   ScienceOn
30 Loper, J. E., Hassan, K. A., Mavrodi, D. V., Davis, E. W. 2nd, Lim, C. K., Shaffer, B. T., Elbourne, L. D., Stockwell, V. O., Hartney, S. L., Breakwell, K., Henkels, M. D., Tetu, S. G., Rangel, L. I., Kidarsa, T. A., Wilson, N. L., van de Mortel, J. E., Song, C., Blumhagen, R., Radune, D., Hostetler, J. B., Brinkac, L. M., Durkin, A. S., Kluepfel, D. A., Wechter, W. P., Anderson, A. J., Kim, Y. C., Pierson, L. S. 3rd, Pierson, E. A., Lindow, S. E., Kobayashi, D. Y., Raaijmakers, J. M., Weller, D.M., Thomashow, L. S., Allen, A. E. and Paulsen, I. T. 2012.Comparative genomics of plant-associated Pseudomonasspp.: insights into diversity and inheritance of traits involvedin multitrophic interactions. PLoS Genet. 8:e1002784.   DOI
31 Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., Cho, B. H., Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075.   DOI   ScienceOn