Browse > Article

Iron Chelator-Inducible Expression System for Escherichia coli  

Lim, Jae-Myung (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology)
Hong, Mi-Ju (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Seong-Hun (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Doo-Byoung (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kang, Hyun-Ah (Department of Life Science, College of Natural Science, Chung-Ang University)
Kwon, Oh-Suk (Omics and Integration Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.8, 2008 , pp. 1357-1363 More about this Journal
Abstract
The $P_{entC}$ promoter of the entCERA operon encoding enzymes for enterobactin biosynthesis in Escherichia coli is tightly regulated by the availability of iron in the culture medium. In iron-rich conditions, the $P_{entC}$ promoter activity is strongly repressed by the global transcription regulator Fur (ferric uptake regulator), which complexes with ferrous ions and binds to the Fur box 19-bp inverted repeat. In this study, we have constructed the expression vector pOS2 containing the $P_{entC}$ promoter and characterized its repression, induction, and modulation by quantifying the expression of the lacZ reporter gene encoding $\beta$-galactosidase. $\beta$-Galactosidase activities of E. coli transformants harboring pOS2-lacZ were highly induced in the presence of divalent metal ion chelators such as 2,2'-dipyridyl and EDTA, and were strongly repressed in the presence of excess iron. It was also shown that the basal level $\beta$-galactosidase expression by the $P_{entC}$ promoter was drastically decreased by incorporating the fur gene into the expression vector. Since the newly developed iron chelator-inducible expression system is efficient and cost-effective, it has wide applications in recombinant protein production.
Keywords
E. coli; iron chelator; Fur; expression system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10: 411-421   DOI   ScienceOn
2 de la Torre, J. C., J. Ortin, E. Domingo, J. Delamarter, B. Allet, J. Davies, K. P. Bertrand, L. V. Wray Jr., and W. S. Reznikoff. 1984. Plasmid vectors based on Tn10 DNA: Gene expression regulated by tetracycline. Plasmid 12: 103-110   DOI   ScienceOn
3 Donovan, R. S., C. W. Robinson, and B. R. Glick. 1996. Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter. J. Ind. Microbiol. 16: 145-154   DOI
4 Hannig, G. and S. C. Makrides. 1998. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol. 16: 54-60   DOI   ScienceOn
5 Kwon, O., M. E. Hudspeth, and R. Meganathan. 1996. Anaerobic biosynthesis of enterobactin Escherichia coli: Regulation of entC gene expression and evidence against its involvement in menaquinone (vitamin $K_2$) biosynthesis. J. Bacteriol. 178: 3252-3259   DOI
6 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
7 Lee, H. J., S. H. Bang, K. H. Lee, and S. J. Park. 2007. Positive regulation of fur gene expression via direct interaction of fur in a pathogenic bacterium, Vibrio vulnificus. J. Bacteriol. 189: 2629-2636   DOI   ScienceOn
8 Lee, S. K. and J. D. Keasling. 2005. A propionate-inducible expression system for enteric bacteria. Appl. Environ. Microbiol. 71: 6856-6862   DOI   ScienceOn
9 Ozenberger, B. A., T. J. Brickman, and M. A. McIntosh. 1989. Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J. Bacteriol. 171: 775-783   DOI
10 Podkovyrov, S. M. and T. J. Larson. 1995. A new vector-host system for construction of lacZ transcriptional fusions where only low-level gene expression is desirable. Gene 156: 151-152   DOI   ScienceOn
11 Su, T. Z., H. Schweizer, and D. L. Oxender. 1990. A novel phosphate-regulated expression vector in Escherichia coli. Gene 90: 129-133   DOI   ScienceOn
12 Smits, T. H., M. A. Seeger, B. Witholt, and J. B. van Beilen. 2001. New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid 46: 16-24   DOI   ScienceOn
13 Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119   DOI   ScienceOn
14 Zhang, Z., G. Gosset, R. Barabote, C. S. Gonzalez, W. A. Cuevas, and M. H. Saier Jr. 2005. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J. Bacteriol. 187: 980-990   DOI   ScienceOn
15 Amann, E., B. Ochs, and K. J. Abel. 1988. Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene 69: 301-315   DOI   ScienceOn
16 Brickman, T. J., B. A. Ozenberger, and M. A. McIntosh. 1990. Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli. J. Mol. Biol. 212: 669-682   DOI
17 Bagg, A. and J. B. Neilands. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26: 5471-5477   DOI   ScienceOn
18 Brosius, J., T. J. Dull, D. D. Sleeter, and H. F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148: 107-127   DOI
19 de Boer, H. A., L. J. Comstock, and M. Vasser. 1983. The tac promoter: A functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80: 21-25
20 Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60:512-538
21 Llull, D. and I. Poquet. 2004. New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl. Environ. Microbiol. 70: 5398-5406   DOI   ScienceOn
22 Guzman, L. M., D. Belin, M. J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177: 4121-4130   DOI
23 Brosius, J., M. Erfle, and J. Storella. 1985. Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. J. Biol. Chem. 260: 3539-3541
24 Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
25 Simons, R. W., F. Houman, and N. Kleckner. 1987. Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53: 85-96   DOI   ScienceOn
26 Dykxhoorn, D. M., R. St. Pierre, and T. Linn. 1996. A set of compatible tac promoter expression vectors. Gene 177: 133-136   DOI
27 Yoo, A. Y., S. W. Kim, J. E. Yu, Y. H. Kim, J. Cha, J. I. Oh, S. K. Eo, J. H. Lee, and H. Y. Kang. 2007. Requirement of Fur for the full induction of Dps expression in Salmonella enterica serovar Typhimurium. J. Microbiol. Biotechnol. 17: 1452-1459   과학기술학회마을
28 Baichoo, N. and J. D. Helmann. 2002. Recognition of DNA by Fur: A reinterpretation of the Fur box consensus sequence. J. Bacteriol. 184: 5826-5832   DOI   ScienceOn
29 Hantke, K. 2002. Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated fhuF protein. J. Mol. Microbiol. Biotechnol. 4: 217-222
30 Figge, J., C. Wright, C. J. Collins, T. M. Roberts, and D. M. Livingston. 1988. Stringent regulation of stably integrated chloramphenicol acetyl transferase genes by E. coli lac repressor in monkey cells. Cell 52: 713-722   DOI   ScienceOn