Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.10.1144

Overexpression of Clast4 Reduces Cell Proliferation  

Kang, Minkook (Department of Biological Sciences, Inje University)
Han, Seung Jin (Department of Biological Sciences, Inje University)
Publication Information
Journal of Life Science / v.24, no.10, 2014 , pp. 1144-1150 More about this Journal
Abstract
The eIF4E protein is the key regulator of translation initiation. The interaction of eIF4E with eIF4G triggers the translation of mRNA, and several proteins interrupt this association to modulate translation. Human 4E-T is one of the eIF4E-binding partners that represses the translation of bound mRNAs, and it is involved in the transport of eIF4E to processing bodies (P-bodies). Although Clast4, the mouse homolog of human 4E-T, might play critical roles in the regulation of translation, its properties are not well known. In this report, we deciphered the properties of Clast4 by determining its phosphorylation state, binding to eIF4E, and effects of overexpression on cell proliferation. Clast4 was phosphorylated by protein kinase A (PKA) in vivo on several residues of its amino terminus. Nevertheless, the PKA phosphorylation of Clast4 appeared to have no effect on either its eIF4E-binding ability or localization. Clast4 interacted with eIF4E1 and CPEB. The conserved eIF4E-binding sequence in Clast4, $YXXXXL_{\phi}$, was important for binding eIF4E1A but not eIF4E1B. Similar to that of another well-known eIF4E regulator, the eIF4E binding protein (4E-BP), the overexpression of Clast4 decreased cell proliferation. These results suggest that Clast4 acts as a global translation regulator in cells.
Keywords
4E-T; Clast4; CPEB; eIF4E1; translation initiation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ule, J. and Darnell, R. B. 2006. RNA binding proteins and the regulation of neuronal synaptic plasticity. Curr Opin Neurobiol 16, 102-110.   DOI   ScienceOn
2 Villaescusa, J. C., Allard, P., Carminati, E., Kontogiannea, M., Talarico, D., Blasi, F., Farookhi, R. and Verrotti, A. C. 2006. Clast4, the murine homologue of human eIF4E-Transporter, is highly expressed in developing oocytes and post-translationally modified at meiotic maturation. Gene 367, 101-109.   DOI   ScienceOn
3 Audic, Y. and Hartley, R. S. 2004. Post-transcriptional regulation in cancer. Biol Cell 96, 479-498.   DOI   ScienceOn
4 Dostie, J., Ferraiuolo, M., Pause, A., Adam, S. A. and Sonenberg, N. 2000. A novel shuttling protein, 4E-T, mediates the nuclear import of the mRNA 5' cap-binding protein, eIF4E. EMBO J 19, 3142-3156.   DOI   ScienceOn
5 Ferraiuolo, M. A., Basak, S., Dostie, J., Murray, E. L., Schoenberg, D. R. and Sonenberg, N. 2005. A role for the eIF4Ebinding protein 4E-T in P-body formation and mRNA decay. J cell biol 170, 913-924.   DOI   ScienceOn
6 Cao, Q. and Richter, J. D. 2002. Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J 21, 3852-3862.   DOI   ScienceOn
7 Cargnello, M., Tcherkezian, J., Dorn, J. F., Huttlin, E. L., Maddox, P. S., Gygi, S. P. and Roux, P. P. 2012. Phosphorylation of the eukaryotic translation initiation factor 4E-transporter (4E-T) by c-Jun N-terminal kinase promotes stress-dependent P-body assembly. Mol Cell Biol 32, 4572-4584.   DOI
8 Gingras, A. C ., Raught, B. and Sonenberg, N. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68, 913-963.   DOI   ScienceOn
9 Heesom, K. J. and Denton, R. M. 1999. Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. FEBS Lett 457, 489-493.   DOI   ScienceOn
10 Igreja, C. and Izaurralde, E. 2011. CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev 25, 1955-1967.   DOI   ScienceOn
11 Jung, M. Y., Lorenz, L. and Richter, J. D. 2006. Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol 26, 4277-4287.   DOI   ScienceOn
12 Minshall, N., Reiter, M. H., Weil, D. and Standart, N. 2007. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem 282, 37389-37401.   DOI   ScienceOn
13 Kamenska, A., Lu, W. T., Kubacka, D., Broomhead, H., Minshall, N., Bushell, M. and Standart, N. 2014. Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing. Nucleic Acids Res 42, 3298-3313.   DOI   ScienceOn
14 Mader, S., Lee, H., Pause, A. and Sonenberg, N. 1995. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15, 4990-4997.   DOI
15 Mendez, R. and Richter, J. D. 2001. Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2, 521-529.   DOI   ScienceOn
16 Piccioni, F., Zappavigna, V. and Verrotti, A. C. 2005. A cup full of functions. RNA Biol 2, 125-128.   DOI
17 Pyronnet, S., Dostie, J. and Sonenberg, N. 2001. Suppression of cap-dependent translation in mitosis. Genes Dev 15, 2083-2093.   DOI   ScienceOn
18 She, Q. B., Halilovic, E., Ye, Q., Zhen, W., Shirasawa, S., Sasazuki, T., Solit, D. B. and Rosen, N. 2010. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39-51.   DOI   ScienceOn
19 Tudisca, V., Simpson, C., Castelli, L., Lui, J., Hoyle, N., Moreno, S., Ashe, M. and Portela, P. 2012. PKA isoforms coordinate mRNA fate during nutrient starvation. J Cell Sci 125, 5221-5232.   DOI
20 Mir, M. A., Duran, W. A., Hjelle, B. L., Ye, C. and Panganiban, A. T. 2008. Storage of cellular 5' mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci USA 105, 19294-19299.   DOI   ScienceOn