• 제목/요약/키워드: Dynamic voltage converter

검색결과 254건 처리시간 0.026초

ZVS-FB PWM DC/DC 변환기의 동특성 해석 및 제어기 설계 (Dynamic Analysis and Control Loop Design of ZVS-FB PWM DC/DC Converter)

  • 이득기;윤길문;차영길;김흥근
    • 전력전자학회논문지
    • /
    • 제3권3호
    • /
    • pp.231-239
    • /
    • 1998
  • 본 논문에서는 대용량에 적합한 영전압 스위칭 전브리지 PWM 직류/직류 변한기의 동특성 해석과 제어 루프의 설계에 대해 논하였다. 전압을 제어하기 위한 위상전이제어의 효과와 영전압 스위칭을 위한 변압기의 누설인덕턴스, FET의 적합 커패시턴스의 이용효과를 고려한 소신호 모델을 유도하였다. 이 소신호 모델은 PWM 벅 변환기의 등가모델에 시비율 변조에 대한 두 개의 종속 전원을 추가함으로써 모델링할 수 있다. 소신호 해석 결과를 근거로 하여 2-극점, 1-영점 보상회로를 사용한 전압제어기를 설계하였다. 설계된 제어기의 타당성을 검증하기 위해서 개루프 시스템과 폐루프 시스템의 소신호 해석결과를 비교하였으며, 2kW급 부하실험으로 설계한 전압제어기의 동특성이 우수함을 실험적으로 입증하였다.

  • PDF

동적 전류분담 인덕터를 적용한 ZVT 풀 브리지 컨버터의 병렬 운전 (The Parallel Operation of ZVT-Full Bridge Converter with Dynamic Current Shared Inductor)

  • 배진용;김용;백수현;권순도;이규훈;김철진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.942-945
    • /
    • 2001
  • This paper presents parallel operation of ZVT(Zero Voltage Transition) Full Bridge Converter with Dynamic Current Shared Inductor. In the conventional method, CT(Current Transformer) have been used to share the load current equally with converters. In this system, at parallel operation of ZVT Full Bridge Converter, dynamic current shared inductor divides the same current of unit converter and ZVT circuit aids to high efficiency. This method which is proposed to compare in the conventional method will do simple control circuit. To show the superiority of this converter is verified through the experiment with a 2kW, 50kHz prototype converter.

  • PDF

탭인덕터 부스트 컨버터를 이용한 LED-드라이버 설계 (Design of the Tapped-Inductor Boost Converter for LED Backlights Driving)

  • 정지욱;박동서;이효길;박신균
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.177-179
    • /
    • 2013
  • This paper presents an LED driver which requires a high voltage gain (5-6 times). To achieve a high voltage gain, the tapped-inductor boost converter topology was used and through the analysis of converter's steady-state and its dynamic characteristics, the product design's reliability and validity were verified.

  • PDF

Verification of New Family for Cascade Multilevel Inverters with Reduction of Components

  • Banaei, M.R.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.245-254
    • /
    • 2011
  • This paper presents a new group for multilevel converter that operates as symmetric and asymmetric state. The proposed multilevel converter generates DC voltage levels similar to other topologies with less number of semiconductor switches. It results in the reduction of the number of switches, losses, installation area, and converter cost. To verify the voltage injection capabilities of the proposed inverter, the proposed topology is used in dynamic voltage restorer (DVR) to restore load voltage. The operation and performance of the proposed multilevel converters are verified by simulation using SIMULINK/MATLAB and experimental results.

A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance

  • Jabbari, Masoud;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.835-844
    • /
    • 2009
  • In this paper a new buck-boost type DC-DC converter is presented. Its voltage gain is positive, all active elements operate under soft-switching condition independent of loading, magnetic isolation and self output short-circuit protection exist, and very fast dynamic operation is achievable by a simple bang-bang controller. This converter also exhibits appropriate PFC characteristics since its input current is inherently proportional to the source voltage. When the voltage source is off-line, it is sufficient to add an inductor after the rectifier, then near unity power factor is achievable. All essential guidelines to design the converter as a DC-DC and a PFC regulator are presented. Simulation and experimental results verify the developed theoretical analysis.

부분 공진형 소프트 스위칭 PWM DC-DC 고전압 컨버터 (Soft-Switched PWM DC-DC High-Power Converter with Quasi Resonant-Poles and Parasitic Reactive Resonant Components of High-Voltage Transformer)

  • 김용주;신대철
    • 전력전자학회논문지
    • /
    • 제4권4호
    • /
    • pp.384-394
    • /
    • 1999
  • This paper deals with a fixed frequency full-bridge inverter type DC-DC high-power converter with high frequency high voltage(HFHV) transformer-coupled stage, which operates under quasi-resonant ZVS transition priciple in spite of a wide PWM-based voltage regulation processing and largely-changed load conditions. This multi-resonant(MR) converter topology is composed of a series capacitor-connected parallel resonant tank which makes the most of parasitic circuit reactive components of HFHV transformer and two additional quasi-resonant pole circuits incorporated into the bridge legs. The soft-switching operation and practical efficacy of this new converter circuit using the latest IGBTs are actually ascertained through 50kV trially-produced converter system operating using 20kHz/30kHz high voltage(HV) transformers which is applied for driving the diagnostic HV X-ray tube load in medical equipments. It is proved from a practical point of view that the switching losses of IGBTs and their electrical dynamic stresses relating to EMI noise can be considerably reduced under a high frequency(HF) switching-based phase-shift PWM control process for a load setting requirements.

  • PDF

Low-Power Voltage Converter Using Energy Recycling Capacitor Array

  • Shah, Syed Asmat Ali;Ragheb, A.N.;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • 제15권1호
    • /
    • pp.62-71
    • /
    • 2017
  • This paper presents a low-power voltage converter based on a reconfigurable capacitor array. Its energy recycling capacitor array stores the energy during a charge stage and supplies the voltage during an energy recycle stage even after the power source is disconnected. The converter reconfigures the capacitor array step-wise to boost the lost voltage level during the energy recycle stage. Its energy saving is particularly effective when most of the energy remaining in the charge capacitors is wasted by the leakage current during a longer sleep period. Simulations have been conducted using a voltage source of 500 mV to supply a $V_{DD}$ of around 800 mV to a load circuit consisting of four 32-bit adders in a 65-nm CMOS process. Results demonstrate energy recycling efficiency of 85.86% and overall energy saving of 40.14% compared to a conventional converter, when the load circuit is shortly active followed by a long sleep period.

독립적인 이중 출력을 갖는 DC-DC 컨버터의 해석 및 설계 (Analysis and Design of DC-DC Converter with Independent Dual Outputs)

  • 허태원;박지호;김형완;우정인
    • 전기학회논문지P
    • /
    • 제54권4호
    • /
    • pp.171-178
    • /
    • 2005
  • The proposed dual-output DC-DC converter that bases on flyback converter can obtain two output voltage with non-isolated main-output and isolated sub-output at the same time using single-winding high frequency transformer. It can solve problems in multi-winding converter that use one main-switch, and also control quality of isolated sub-output voltage can be improved by additional sub-switch to the second. For analysis and design of the proposed converter system, converters are classified as operation mode from switching state and are become modeling by applying state space averaging method. Steady-state characteristics and dynamic characteristics are analyzed by DC component and perturbation component from state space averaging model. From experiment converter, validity of analysis and design for the propose converter system is confirm.

Dynamic Reference-based Voltage Droop Control for VSC-MTDC System

  • Kim, Nam-Dae;Kim, Hak-Man;Park, Jae-Sae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2249-2255
    • /
    • 2015
  • The use of voltage source converter multi-terminal direct current (VSC-MTDC) systems is anticipated to increase from the introduction of wind farms and super grids in the near future. Effective control of the DC voltage in VSC-MTDC systems is an important research topic. This paper proposes a new dynamic reference-based voltage droop control to control the DC voltage in VSC-MTDC systems more effectively. The main merit of the dynamic reference-based voltage droop control is that it can reduce the steady-state error in conventional voltage droop control by changing references according to the system operating conditions. The performance of the proposed control was tested in a hardware-in-the-loop simulation (HILS) system based on the OPAL-RT real-time digital simulator and four digital signal processing boards.

QSRC의 출력전압맥동해석 (Output Voltage Ripple Analysis of Quantum Series Resonant Converter)

  • 임성운;권우현;조규형
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.141-149
    • /
    • 1994
  • In this paper, we could find optimum quantum sequence(OQS) to minimize the output ripple voltage of the quantum series resonant converter(QSRC). This sequence control is so general that it is irrelevant to the voltage gain so far as it is operating in the continuous conduction mode(CCM). Further more the dynamic range of QSRC is much extended by the optimum quantum sequence control(OQSC). Througuout the time-domain analysis, the solution of steady state and the boundary condition between continuous and discontinuous mode is QSRC is obtained. This feature is verified by simulations and experiments with good agreements.

  • PDF