• 제목/요약/키워드: Dynamic instabilities

검색결과 72건 처리시간 0.025초

THICKNESS OPTIMIZATION OF AN AUTOMOBILE BODY FOR NATURAL FREQUENCY MAXIMIZATION

  • Panganiban, Henry;Jang, Gang-Won;Chung, Tae-Jin;Choi, Young-Min
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.572-577
    • /
    • 2007
  • The paper presents design optimization of an automobile body for dynamic stiffness improvement. The thicknesses of plates making-up the monocoque body of an automobile were employed as design variables for optimization and the objective was to increase the first torsional and bending natural frequencies. By allotting one design variable to each plate of the body, compared to previous works based on element-wise design variables, design space of optimization was reduced to a large extent and numerical instabilities such as checkerboard pattern was efficiently evaded. The method resulted to a considerable amount of increase in the automobile body's torsional and bending natural frequencies. Considering manufacturability of the optimized result, the converged values of plate thicknesses were approximated to commercially-available values by appropriately reflecting their design sensitivities.

  • PDF

열손실에 의한 확산-열 불안정성의 가속화 (Acceleration in Diffusive-thermal Instability by Heat Losses)

  • 박준성;박정;김정수
    • 한국연소학회지
    • /
    • 제12권2호
    • /
    • pp.34-41
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses and Lewis number on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The excessive heat loss caused by the smaller burner diameter in which the flame length is an indicator of lateral conduction heat loss extends the region of flame oscillation and accelerates oscillatory instability in comparison to the previous study with the burner diameter of 26mm. Extinction behaviors quite different from the previous study are also addressed.

  • PDF

열손실에 의한 확산-열 불안정성의 가속화 (Acceleration in Diffusive-thermal Instability by Heat Losses)

  • 박준성;박정;이기만;김정수;김성초
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

화염전달함수의 위상차를 이용한 시간지연 분석 (Time Lag Analysis Using Phase of Flame Transfer Function)

  • 표영민;김지환;김대식
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.104-110
    • /
    • 2016
  • Main purpose of the current paper is to show results of time lag analysis using phase information of flame transfer function in order to predict combustion instabilities in a gas turbine combustor. The flame transfer function (FTF) is modeled using a commercial Computational Fluid Dynamics (CFD) code (Fluent). Comparisons of the modeled flame shapes with the measured ones were made using the optimized heat transfer conditions and combustion models. The FTF modeling results show a quite good agreement with the measurement data in predicting the phase delay (i.e. time lag). Time lag analysis results using the phase of FTF shows better combustion instability prediction accuracy than using time lag calculated from the steady state flame length.

주기적인 충격력을 받는 탄소성 보의 케이오틱거동 연구 (A Study of Chaotic Responses of an Elastic-Plastic Beam Model to Periodic Impulsive Force)

  • 이재영
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1158-1167
    • /
    • 1995
  • In this study, the dynamic instabilities of a beam, subjected to periodic short impulsive loading, are investigated using simple 2-DoF beam model. The behaviors of beam model whose axial motions are constrained are studied for the case of elastic and elastic-plastic behavior. In the case of elastic behavior, the chaotic responses due to the periodic pulse are identified, and the characteristics of the behavior are analysed by investigating the fractal attractors in the Poincare map. The short-term and long-term responses of the beam are unpredictable because of the extreme sensitivities to parameters, a hallmark of chaotic response. In the case of elastic-plastic behavior, the responses are governed by the plastic strains which occur continuously and irregularly as time increases. Thus the characteristics of the response behavior change continuously due to the plastic strain increments, and are unpredictable as well as the elastic case.

플륨 모니터링에 의한 SM45C 레이저 용접특성 평가 (Estimation of Laser Welding Behavior of SM45C Steels by Plume Monitoring)

  • 유영태;김재열;노경보;양동조;오용석;임기건;김지환
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.14-21
    • /
    • 2003
  • With the increased use of lasers in industrial welding applications, techniques for monitoring and controlling these processes become increasingly important. It is very important that we understand the dynamic behaviors of the laser induced Plume in welding, because the laser induced plume has considerable effects on welding efficiency and the quality of materials. As the plume fluctuation was associated with keyhole instability, unstable vapor plume indicated the process was unstable and would result in poor welds. An Infrared Thermal-vision Camera can be utilized compensate for incurracies encountered in real-time monitoring during laser welding. We have results that instabilities of plume are closely related with hot cracking and defect of laser welding.

단일 모드 공진기에서의 동역학 공명형광 (Dynamic Resonance Fluorescence in a Colored Vacuum)

  • Hyoncheol Nha;Chough, Young-Tak;Wonho Jhe;Kyoungwon An
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 제11회 정기총회 및 00년 동계학술발표회 논문집
    • /
    • pp.126-127
    • /
    • 2000
  • Resonance fluorescence is the manifestation of the interaction between the physical system under consideration and the vacuum-field fluctuation. The fluorescence spectrum provides such physical informations as the energy-level structure of the system, instabilities and relative populations of the energy levels, etc.. One of the typical fluorescence spectra is the Mollow triplet appearing when two-level atoms are driven by a strong coherent field in free space$^{(1)}$ . In the weak field limit, the singlet instead of the triplet is obtained with a reduced linewidth due to the squeezing of one quadrature phase of the induced atomic dipole$^{(2)}$ . On the other hand, when the atoms are put inside a cavity rather than in free space, a doublet spectrum due to the vacuum Rabi-splitting is achieved, showing clearly the coupling of atoms and the cavity in the single-quantum limit$^{(3)}$ . (omitted)

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.

회전 역삼투 분리막 여과 (Rotating Reverse Osmosis Membrane Filtration)

  • Sangho Lee;Richard M. Lueptow
    • 멤브레인
    • /
    • 제13권3호
    • /
    • pp.131-142
    • /
    • 2003
  • 원통형 회전 역삼투법은 높은 전단력과 유체의 불안정성을 결합시켜 막오염을 감소시키는 동적 여과방법이다. 이 논문은, 회전여과의 물리적 특성, 물질전달과 농도분극 현상, 이론적 및 실험적 해석, 사례연구 등 회전역삼투법에 대한 최근의 연구를 요약해서 보여준다.

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.