Browse > Article
http://dx.doi.org/10.12989/csm.2021.10.1.079

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach  

Hajdo, Emina (Faculty of Civil Engineering, University of Sarajevo)
Mejia-Nava, Rosa Adela (Universite de Technologie Compiegne, Laboratoire Roberval de Mecanique)
Imamovic, Ismar (Faculty of Civil Engineering, University of Sarajevo)
Ibrahimbegovic, Adnan (Universite de Technologie Compiegne, Laboratoire Roberval de Mecanique)
Publication Information
Coupled systems mechanics / v.10, no.1, 2021 , pp. 79-102 More about this Journal
Abstract
In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.
Keywords
instability problems; non-conservative load; Euler-Bernoulli beam; von Karman strain; Timoshenko beam; shear deformation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Amoozgar, M.R. and Shahverdi, H. (2016), "Dynamic instability of beams under tip follower forces using geometrically exact, fully intrinsic equations", Lat. Am. J. Solid. Struct., 13, 3022-3038. https://doi.org/10.1590/1679-78253010.   DOI
2 Beck, M. (1952), "Die Knicklast des einseitig eingespannten, tangential gedruckten Stabes", J. Appl. Math. Phys., 3, 225-228. https://doi.org/10.1007/BF02008828.   DOI
3 Bolotin, V.V. (1963), Nonconservative Problems of Theory of Elastic Stability, Pergamon Press.
4 Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden-Day Inc.
5 Brank, B. and Lovrencic, M. (2018), "Simulation of shell buckling by implicit dynamics and numerically dissipative schemes", Thin Wall. Struct., 132, 682-699. https://doi.org/10.1016/j.tws.2018.08.010.   DOI
6 Culver, D., McHugh, K.A. and Dowell, E.H. (2019), "An assessment and extension of geometrically nonlinear beam theories", Mech. Syst. Signal Pr., 134, 106340. https://doi.org/10.1016/j.ymssp.2019.106340.   DOI
7 Dujc, J., Brank, B. and Ibrahimbegovic, A. (2010), "Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling", Comput. Meth. Appl. Mech. Eng., 199(21-22), 1371-1385. https://doi.org/10.1016/j.cma.2009.09.003.   DOI
8 Elishakoff, I. (2005), "Controversy associated with the so-called "Follower Forces": Critical overview", Appl. Mech. Rev., 58(2), 117-142. https://doi.org/10.1115/1.1849170.   DOI
9 Fazelzadeh, S.A., Karimi-Nobandegani, A. and Mardanpour, P. (2017), "Dynamic Stability of Pretwisted Cantilever Beams Subjected to Distributed Follower Force", AIAA J., 55(3), 955-964. https://doi.org/10.2514/1.J055421.   DOI
10 Gasparini, A.M., Saetta, A.V. and Vitaliani, R.V. (1995), "On the stability and instability regions of non-conservative continuous system under partially follower forces", Comput. Meth. Appl. Mech. Eng., 124, 63-78. https://doi.org/10.1016/0045-7825(94)00756-D.   DOI
11 Hajdo, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "Buckling analysis of complex structures with refined model built of frame and shell finite elements", Coupl. Syst. Mech., 9, 29-46. http://dx.doi.org/10.12989/csm.2020.9.1.029.   DOI
12 Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
13 Ibrahimbegovic, A. and Taylor, R.L. (2002), "On the role of frame-invariance of structural mechanics models at finite rotations", Comput. Meth. Appl. Mech. Eng., 191, 5159-5176. https://doi.org/10.1016/S0045-7825(02)00442-5.   DOI
14 Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupl. Syst. Mech., 2, 349-374. http://dx.doi.org/10.12989/csm.2013.2.4.349.   DOI
15 Farhat, C., Kwan-yu Chiu, E., Amsallem, D., Sholte, J. and Ohayon, R. (2013), "Modeling of fuel sloshing and its physical effects on flutter", AIAA J., 51(9), 100-114. https://doi.org/10.2514/1.J052299.   DOI
16 Imamovic I., Ibrahimbegovic, A. and Hajdo, E. (2019), "Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam", Coupl. Syst. Mech., 8, 537-553. https://doi.org/10.12989/csm.2019.8.6.537.   DOI
17 Jeronen, J. and Kouhia, R. (2015), "On the effect of damping on stability of nonconservative systems", Proceedings XII Finish Mechanics Days, Eds. R. Kouhia et al., 77-82.
18 Lacarbonara, W. and Yabuno, H. (2006), "Refined models of elastic beams undergoing large in-plane motions: theory and experiment", Int. J. Solid. Struct., 43(17), 5066-5084. https://doi.org/10.1016/j.ijsolstr.2005.07.018.   DOI
19 Langthjem, M.A. and Sugiyama, Y. (2000), "Dynamics stability of column subjected to follower load", J. Sound Vib., 238(5), 809-851. https://doi.org/10.1006/jsvi.2000.3137.   DOI
20 Lozano, R., Brogliato, B., Egeland, O. and Maschke, B. (2000), Dissipative Systems Analysis and Control: Theory and Applications, Springer.
21 Masjedi, P.K. and Ovesy, H.R. (2015) "Large deflection analysis of geometrically exact spatial beams under conservative and nonconservative loads using intrinsic equations", Acta Mech., 226, 1689-1706. https://doi.org/10.1007/s00707-014-1281-3.   DOI
22 McHugh, K.A. and Dowell, E.H. (2020), "Nonlinear response of an inextensible, free-free beam subjected to a nonconservative follower force", J. Comput. Nonlin. Dyn., 15(2), 021003. https://doi.org/10.1115/1.4045532.   DOI
23 Medic, S., Dolarevic, S. and Ibrahimbegovic, A. (2013), "Beam model refinement and reduction", Eng. Struct., 50, 158-169. https://doi.org/10.1016/j.engstruct.2012.10.004.   DOI
24 Mejia Nava, A.R., Ibrahimbegovic, A. and Lozano, R. (2020), "Instability phenomena and their control in statics and dynamics: Application to deep and shallow truss and frame structures", Coupl. Syst. Mech., 9, 47-62. http://dx.doi.org/10.12989/csm.2020.9.1.047.   DOI
25 Piculin, S. and Brank, B. (2015), "Weak coupling of shell and beam computational models for failure analysis of steel frames", Finite Elem. Anal. Des., 97, 20-42. https://doi.org/10.1016/j.finel.2015.01.001.   DOI
26 Timoshenko, S. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw Hill.
27 Sugiyama, Y., Langthjem, M.A. and Katayama, K. (2019), Dynamic Stability of Columns under Nonconservative Forces: Theory and Experiment, Springer.