Browse > Article
http://dx.doi.org/10.5140/JASS.2015.32.1.1

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere  

Hwang, Kyoung-Joo (NASA Goddard Space Flight Center)
Publication Information
Journal of Astronomy and Space Sciences / v.32, no.1, 2015 , pp. 1-11 More about this Journal
Abstract
Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.
Keywords
magnetopause; Kelvin-Helmholtz waves; reconnection; ULF waves;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Farrugia CJ, Gratton FT, Bender L, Biermat HK, Erkaev NV, et al., Charts of joint Kelvin-Helmholtz and Rayleigh-Taylor instabilities at the dayside magnetopause for strongly northward interplanetary magnetic field, JGR 103, 6703-6727 (1998). http://dx.doi.org/10.1029/97JA03248   DOI
2 Farrugia CJ, Gratton FT, Aspects of magnetopause/magnetosphere response to interplanetary discontinuities, and features of magnetopause Kelvin-Helmholtz wave, Journal of Atmospheric and Solar-Terrestrial Physics 73, 40-51 (2011). http://dx.doi.org/10.1016/j.jastp.2009.10.008   DOI
3 Farrugia CJ, Gratton FT, Gnavi G, Torbert RB, Wilson III LB, A vortical dawn flank boundary layer for near-radial IMF: Wind observations on 24 October 2001, JGR 119, 4572-4590 (2014). http://dx.doi.org/10.1002/2013JA019578   DOI
4 Fenrich FR, Samson JC, Sofko G, Greenwald RA, ULF high and low-m field line resonances observed with the Super Dual Auroral Radar Network, JGR 100, 21535-21547 (1995). http://dx.doi.org/10.1029/95JA02024   DOI
5 Freeman MP, Freeman NC, Farrugia CJ, A linear perturbation analysis of magnetopause motion in the Newton-Busemann limit, Annales Geophysicae 13, 907-918 (1995). http://dx.doi.org/10.1007/s00585-995-0907-0   DOI
6 Glassmeier K, Auster H, Constantinescu D, Narita Y, Plaschke F, et al., Magnetospheric quasi-static response to the dynamic magnetosheath: A THEMIS case study, Geophysical Research Letters 35, L17S01 (2008). http://dx.doi.org/10.1029/2008GL033469   DOI
7 Gratton FT, Gnavi G, Farrugia CJ, Bilbao L, Torbert R, Velocity shear instability and plasma billows at the Earth's magnetic boundary, Journal of Physics: Conference Series 370, 012003 (2012). http://dx.doi.org/10.1088/1742-6596/370/1/012003   DOI
8 Agapitov O, Glassmeier K-H, Auster H, Constantinescu D, Angelopoulos V, et al., Surface waves and field line resonances: A THEMIS case study, JGR 114, A00C27 (2009). http://dx.doi.org/10.1029/2008JA013553   DOI
9 Alfven H, Falthammar CG, Cosmical Electrodynamics (Oxford Univ. Press, New York, 1963).
10 Allan W, Wright AN, McDiarmid DR, Spacecraft transits across simulated field line resonance regions, JGR 102, 14,407 (1997). http://dx.doi.org/10.1029/97JA01082   DOI
11 Archer MO, Horbury TS, Eastwood JP, Weygand JM, Yeoman TK, Magnetospheric response to magnetosheath pressure pulses: A low-pass filter effect, JGR 118, 5454-5466 (2013). http://dx.doi.org/10.1002/jgra.50519   DOI
12 Aubry MP, Kivelson MG, Russell CT, Motion and structure of the magnetopause, JGR 76, 1673-1696 (1971). http://dx.doi.org/10.1029/JA076i007p01673   DOI
13 Borovsky JE, Hesse M, Birn J, Kuznetsova MM, What determines the reconnection rate at the dayside magnetosphere?, JGR 113, A07210 (2008). http://dx.doi.org/10.1029/2007JA012645   DOI
14 Borve S, Sato H, Pecseli HL, Trulsen JK, Minute-scale period oscillations of the magnetosphere, Annales Geophysicae 29, 663-671 (2011). http://dx.doi.org/10.5194/angeo-29-663-2011   DOI
15 Cassak PA, Shay MA, Scaling of asymmetric magnetic reconnection: General theory and collisional simulations, Physics of Plasmas 14, 102114 (2007). http://dx.doi.org/10.1063/1.2795630   DOI
16 Chandrasekhar S, Hydrodynamic and Hydromagnetic Stability (Oxford Univ. Press, New York, 1961).
17 Chaston CC, Wilber M, Mozer FS, Fujimoto F, Goldstein ML, et al., Mode Conversion and Anomalous Transport in Kelvin-Helmholtz Vortices and Kinetic Alfven Waves at the Earth's Magnetopause, PhRvL 99, 175004 (2007). http://dx.doi.org/10.1103/PhysRevLett.99.175004   DOI
18 Clausen LBN, Yeoman TK, Comprehensive survey of Pc4 and Pc5 band spectral content in Cluster magnetic field data, Annales Geophysicae 27, 3237-3248 (2009). http://dx.doi.org/10.5194/angeo-27-3237-2009   DOI
19 Hartinger MD, Angelopoulos V, Moldwin MB, Takahashi K, Clausen LBN, Statistical study of global modes outside the plasmasphere, JGR 118, 804-822 (2013). http://dx.doi.org/10.1002/jgra.50140   DOI
20 Harrold BG, Samson JC, Standing ULF modes of the magnetosphere: A theory, Geophysical Research Letters 19, 1811-1814 (1992). http://dx.doi.org/10.1029/92GL01802   DOI
21 Hartinger M, Angelopoulos V, Moldwin MB, Nishimura Y, Turner DL, et al., Observations of a Pc5 global (cavity/waveguide) mode outside the plasmasphere by THEMIS, JGR 117, A06202 (2012). http://dx.doi.org/10.1029/2011JA017266.   DOI
22 Hasegawa A, Plasma instabilities and non-linear effects (Springer-Verlag, New York, 1975).
23 Hasegawa H, Retino A, Vaivads A, Khotyaintsev Y, Andre M, et al., Kelvin-Helmholtz waves at the Earth's magnetopause: Multiscale development and associated reconnection, JGR 114, A12207 (2009). http://dx.doi.org/10.1029/2009JA014042   DOI
24 Hasegawa H, Wang J, Dunlop MW, Pu ZY, Zhang QH et al., Evidence for a flux transfer event generated by multiple X‐line reconnection at the magnetopause, Geophysical Research Letters 37, L16101 (2010). http://dx.doi.org/10.1029/2010GL044219   DOI
25 Hwang K-J, Kuznetsova MM, Sahraoui F, Goldstein ML, Lee E, et al., Kelvin‐Helmholtz waves under southward interplanetary magnetic field, JGR 116, A08210 (2011). http://dx.doi.org/10.1029/2011JA016596   DOI
26 Hwang K-J, Goldstein ML, Kuznetsova MM, Wang Y, Viñas AF, et al., The first in situ observation of Kelvin-Helmholtz waves at high-latitude magnetopause during strongly dawnward interplanetary magnetic field conditions, JGR 117, A08233 (2012). http://dx.doi.org/10.1029/2011JA017256   DOI
27 Prikryl P, Greenwald RA, Sofko GJ, Villain JP, Ziesolleck CWS, et al., Solar-wind-driven pulsed magnetic reconnection at the dayside magnetopause, Pc5 compressional oscillations, and field line resonances, JGR 103, 17307-17322 (1998). http://dx.doi.org/10.1029/97JA03595   DOI
28 Omidi N, Sibeck DG, Blanco-Cano X, Foreshock compressional boundary, JGR 114, A08205 (2009). http://dx.doi.org/10.1029/2008JA013950   DOI
29 Otto A, Fairfield DH, Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations, JGR 105, 21175-21190 (2000). http://dx.doi.org/10.1029/1999JA000312   DOI
30 Phan TD, Dunlop MW, Paschmann G, Klecker B, Bosqued JM, Cluster observations of continuous reconnection at the magnetopause under steady interplanetary magnetic field conditions, Annales Geophysicae 22, 2355-2367 (2004). http://dx.doi.org/10.5194/angeo-22-2355-2004   DOI
31 Rae IJ, Donovan EF, Mann IR, Fenrich FR, Watt CEJ, et al., Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval, JGR 110, A12211 (2005). http://dx.doi.org/10.1029/2005JA011007   DOI
32 Raeder J, Flux Transfer Events: 1. generation mechanism for strong southward IMF, Annales Geophysicae 24, 381-392 (2006). http://dx.doi.org/10.5194/angeo-24-381-2006   DOI
33 Rickard GJ, Wright AN, ULF pulsations in a magnetospheric waveguide: Comparison of real and simulated satellite data, JGR 100, 3531-3537 (1995). http://dx.doi.org/10.1029/94JA02935   DOI
34 Russell CT, Elphic RC, Initial ISEE magnetometer results: magnetopause observations, SSRv 22, 681-715 (1978). http://dx.doi.org/10.1007/BF00212619   DOI
35 Drake JF, Swisdak M, Phan TD, Cassak PA, Shay MA, et al., , Ion heating resulting from pickup in magnetic reconnection exhausts, JGR 114, A05111 (2009). http://dx.doi.org/10.1029/2008JA013701   DOI
36 Collado-Vega YM, Kessel RL, Shao X, Boller RA, MHD flow visualization of magnetopause boundary region vortices observed during high-speed streams, JGR 112, A06213 (2007). http://dx.doi/org/10.1029/2006JA012104   DOI
37 Cornilleau-Wehrlin N, Grison B, Attie B, Belmont G, Rezeau L, et al., Latitude and local time dependence of ULF wave power at the magnetopause: A Cluster-Double Star study, JGR 113, A07S09 (2008). http://dx.doi.org/10.1029/2007JA012780   DOI
38 Cowee MM, Winske M, Gary SP, Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: Density variations and magnetic shear, JGR 115, A06214 (2010). http://dx.doi.org/10.1029/2009JA015011   DOI
39 Dungey JW, Electrodynamics of the outer atmosphere, in Proceedings of the Ionosphere Conference, The Physical Society of London (1955).
40 Dusik S, Granko G, Safrankova J, Nemecek Z Jelinek K, IMF cone angle control of the magnetopause location: Statistical study, Geophysical Research Letters 37, L19103 (2010). http://dx.doi.org/10.1029/2010GL044965   DOI
41 Elkington SR, Hudson MK, Wiltberger MJ, Lyon JG, MHD/particle simulations of radiation belt dynamics, Journal of Atmospheric and Solar-Terrestrial Physics 64, 607-615 (2002). http://dx.doi.org/10.1016/S1364-6826(02)00018-4   DOI
42 Elkington SR, Hudson MK Chan AA, Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, JGR 108, 1116 (2003). http://dx.doi.org/10.1029/2001JA009202   DOI
43 Lee D-H, Kim H, Compressional MHD waves in the magnetosphere: A new approach, JGR 104, 12379-12385 (1999). http://dx.doi.org/10.1029/1999JA900053   DOI
44 Hwang K-J, Sibeck DG, Goldsten ML, Nishimura Y, Donovan E, et al., The role of Kelvin-Helmholtz waves in the dynamics of the dayside magnetopause and the inner magnetosphere, in 2014 Eos Trans. AGU Fall Meeting, San Francisco, CA, 15-19 Dec2014.
45 Kivelson MG, Southwood DJ, Resonant ULF waves: A new interpretation Geophysical Research Letters 12, 49-52 (1985). http://dx.doi.org/10.1029/GL012i001p00049   DOI
46 Kuznetsova M, Hesse M, Sibeck D, Rastaetter L, Toth G, et al., Non‐steady reconnection in global simulations of magnetosphere dynamics, in 2008 Eos Trans. AGU Fall Meeting, San Francisco, CA, 15-19 2008.
47 Lee SH, Zhang H, Zong Q-G, Otto A, Sibeck DG, et al., Plasma and energetic particle behaviors during asymmetric magnetic reconnection at the magnetopause, JGR 119, 1658-1672 (2014). http://dx.doi.org/10.1002/2013JA019168   DOI
48 Lee SH, Zhang H, Zong Q-G, Wang Y, Otto A, et al., Asymmetric ionospheric outflow observed at the dayside magnetopause, in 2014 Eos Trans. AGU Fall Meeting, San Francisco, CA, 15-19 Dec 2014.
49 Lotoaniu TM, Singer HJ, Waters CL, Angelopoulos V, Mann IR, et al., Relativistic electron loss due to ultralow frequency waves and enhanced outward radial diffusion, JGR 115, A12245 (2010). http:dx.doi.org/10.1029/2010JA015755   DOI
50 Ma X, Otto A, Delamere PA, Interaction of magnetic reconnection and Kelvin-Helmholtz modes for large magnetic shear: 1. Kelvin-Helmholtz trigger, JGR 119, 781-797 (2014a). http://dx.doi.org/10.1002/2013JA019224   DOI
51 Southwood DJ, The hydromagnetic stability of the magnetospheric boundary, P&SS 16, 587- 605 (1968). http://dx.doi.org/10.1016/0032-0633(68)90100-1   DOI
52 Sarafopoulos DV, A case study testing the cavity mode model of the magnetosphere, Annales Geophysicae 23, 1867-1880 (2005). http://dx.doi.org/10.5194/angeo-23-1867-2005   DOI
53 Sckopke N, Paschmann G, Bame SJ, Gosling JT, Russell CT, Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non-specularly reflected ions, JGR 88, 6121-6136 (1983). http://dx.doi.org/10.1029/JA088iA08p06121   DOI
54 Smit GR, Oscillatory motion of the nose region of the magnetopause, JGR 73, 4990-4993 (1968). http://dx.doi.org/10.1029/JA073i015p04990   DOI
55 Southwood DJ, Some features of field line resonances in the magnetosphere, P&SS 17, 483-491 (1974). http://dx.doi.org/10.1016/0032-0633(74)90078-6   DOI
56 Southwood DJ, Kivelson MG, Charged particle behavior in lowfrequency geomagnetic pulsations. I Transverse waves, JGR 86, 5643-5655 (1981). http://dx.doi.org/10.1029/JA086iA07p05643   DOI
57 Stix TH, The Theory of Plasma Waves (McGraw-Hill, New York, 1962).
58 Suvorova AV, Shue J-H, Dmitriev AV, Sibeck DG, McFadden JP, et al., Magnetopause expansions for quasi‐radial interplanetary magnetic field: THEMIS and Geotail observations, JGR 115, A10216 (2010). http://dx.doi.org/10.1029/2010JA015404   DOI
59 Takagi K, Hashimoto C, Hasegawa H, Fujimoto F, TanDokoro R, Kelvin-Helmholtz instability in a magnetotail flank-like geometry: Three-dimensional MHD simulations, JGR 111, A08202 (2006). http://dx.doi.org/10.1029/2006JA011631   DOI
60 Yan GQ, Mozer FS, Shen C, Chen T, Parks GK, et al., Kelvin-Helmholtz vortices observed by THEMIS at the duskside of the magnetopause under southward interplanetary magnetic field, Geophysical Research Letters 41, 4427-4434 (2014). http://dx.doi.org/10.1002/2014GL060589   DOI
61 Yao Y, Chaston CC, Glassmeier K-H, Angelopoulos V, Electromagnetic waves on ion gyro‐radii scales across the magnetopause, Geophysical Research Letters 38, L09102 (2011). http://dx.doi.org/10.1029/2011GL047328   DOI
62 Zhu X, Kivelson MG, Global mode ULF pulsations in a magnetosphere with a nonmonotonic Alfven velocity profile, JGR 94, 1479-1485 (1989). http://dx.doi.org/10.1029/JA094iA02p01479   DOI
63 Matsumoto Y, Hoshino M, Onset of turbulence induced by a Kelvin-Helmholtz vortex, Geophysical Research Letters 31, L02807 (2004). http://dx.doi.org/10.1029/2003GL018195   DOI
64 Ma X, Otto A, Delamere PA, Interaction of magnetic reconnection and Kelvin-Helmholtz modes for large magnetic shear: 2. Reconnection trigger, JGR 119, 808-820 (2014b). http://dx.doi.org/10.1002/2013JA019225   DOI
65 Mann IR, Wright AN, Mills KJ, Nakariakov VM, Excitation of magnetospheric waveguide modes by magnetosheath flows, JGR 104, 333-353 (1999). http://dx.doi.org/10.1029/1998JA900026   DOI
66 Mann IR, Coronkov I, Dunlop M, Donovan E, Yeoman DK, et al., Co-ordinated ground-based and Cluster observations of large amplitude global magnetospheric oscillations during a fast solar wind speed interval, Annales Geophysicae 20, 405-426 (2002). http://dx.doi.org/10.5194/angeo-20-405-2002   DOI
67 Matsumoto Y,Hoshino M, Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer, JGR 111, A05213 (2006). http://dx.doi.org/10.1029/2004JA010988   DOI
68 McHenry MA, Clauer CR, Friis-Christense E, Newell T, Kelly JD, Ground observations of magnetospheric boundary layer phenomena, JGR 95, 14995-15005 (1990). http://dx.doi.org/10.1029/JA095iA09p14995   DOI
69 Nakamura TKM, Hasegawa H, Shinohara I, Fujimoto M, Evolution of an MHD‐scale Kelvin--Helmholtz vortex accompanied by magnetic reconnection: Twodimensional particle simulations, JGR 116, A03227 (2011). http://dx.doi.org/10.1029/2010JA016046   DOI
70 Nykyri K, Otto A, Plasma transport at the magnetospheric boundary due to reconnection in Kelvin-Helmholtz vortices, JGR 28, 3565-3568 (2001). http://dx.doi.org/10.1029/2001GL013239   DOI
71 Walker ADM, Greenwald RA, Stuart WF, Green CA, Stare aurora1 radar observations of PC 5 geomagnetic pulsations. JGR 84. 3373-3388 (1979). http://dx.doi.org/10.1029/JA084iA07p03373   DOI
72 Takahashi K, McPherron RL, Hughes WJ, Multispacecraft observations of the harmonic structure of Pc3-4 magnetic pulsations, JGR 89, 6758 (1984). http://dx.doi.org/10.1029/JA089iA08p06758   DOI
73 Takahashi K, Bonnell J, Classmeier K-H, Angelopoulos V, Singer HJ, et al., Multipoint observation of fast mode waves trapped in the dayside plasmasphere, JGR 115, A12247 (2010). http://dx.doi.org/10.1029/2010JA015956   DOI
74 Turner DL, Shprits Y, Hartinger M, Angelopoulos V, Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nature Physics 8, 208-212 (2012). http://dx.doi.org/10.1038/nphys2185.   DOI
75 Walker ADM, Ruohoniemi JM, Baker KD, Greenwald RA, Samson JC, Spatial and temporal behavior of ULF pulsations observed by the Goose Bay HF radar, JGR 97, 12187-12202 (1992). http://dx.doi.org/10.1029/92JA00329   DOI
76 Wang Y, Elphic RC, Lavraud B, Taylor MGG, Birn J, et al., Initial results of high-latitude magnetopause and low-latitude flank flux transfer events from 3 years of Cluster observations, JGR 110, A11221, http://dx.doi.org/10.1029/2005JA011150   DOI
77 Waters CL, Takahashi K, Lee D-H, Anderson BJ, Detection of ultralow-frequency cavity modes using spacecraft data, JGR 107, 1284 (2002). http://dx.doi.org/10.1029/2001JA000224   DOI
78 Wright AN, Dispersion and wave coupling in inhomogeneous MHD waveguides, JGR 99, 159-167 (1994). http//dx.doi.org/10.1029/93JA02206   DOI