Rotating Reverse Osmosis Membrane Filtration

Sangho Lee† and Richard M. Lueptow*

Construction Environment Research, Korea Institute of Construction Technology, Gyeonggi-Do, 411-712, Korea
*Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, U.S.A.

Received August 5, 2003

Abstract: Cylindrical rotating reverse osmosis (RO) is a means of dynamic filtration that incorporates both high shear and flow instabilities to reduce membrane fouling. This article summarizes recent works on rotating RO including the physics of rotating filtration; mass transfer and concentration polarization; theoretical and experimental analysis; and some case studies.

Keywords: reverse osmosis (RO), rotating filtration, concentration polarization, fouling

1. Introduction

Reverse osmosis (RO) filtration has been considered a promising technology for water and wastewater treatment. RO filtration removes ions and organic chemicals, and its treatment efficiency and performance are stable and predictable. RO processing has been successfully applied in desalination of seawater [1]; drinking water production [2], and wastewater recycling in many industries [3-5].

However, a problem that needs to be resolved in the application of RO membranes is the sensitivity to fouling, which results in a decrease in filtrate flux. Concentration polarization and subsequent membrane fouling are the most serious obstacles that limit the acceptance of RO membrane treatment. Therefore, techniques to control membrane fouling are of great importance.

The reduction and alleviation of concentration polarization in filtration and RO have been the focus of much research and development [6]. Attempts to reduce concentration polarization include increasing the fluid velocity [7], inserting turbulence promoters in the feed channels [8], pulsing the feed flow over the membrane [9], and designing the flow path so Dean vortices occur [10,11]. High shear membrane filtration systems such as rotating disk membranes [12] and rotating cylinder filtration [13] have been also investigated because of their potential for reducing polarization.

Among various antifouling techniques, cylindrical rotating filtration that takes advantage of centrifugal
flow instabilities has drawn attentions as a new technique to control flux decline due to plugging of the filter pores during microfiltration and ultrafiltration. The system consists of a cylindrical filter rotating within a stationary cylindrical shell (Fig. 1). A suspension enters one end of the annulus between the coaxial cylinders and travels axially in the annulus. The permeate passes through the porous inner cylinder and is channeled to the hollow shaft supporting the inner cylinder where it exits the device. The suspension becomes increasingly concentrated as it moves along the annulus to the exit at one end of the annulus. The resulting two products of the device are the concentrated suspension and the particle-free filtrate.

The unique advantage of a rotating membrane filtration is that the build-up of particles and other species near the filter surface is very slow compared to dead-end or crossflow filtration [14]. Many studies report a strong anti-fouling effect for rotating microfiltration [15,16] and ultrafiltration [17]. However, relatively little work has been done to further the application of rotating membrane filtration except for blood filtration [18-20] and biological separation [21].

Recently, rotating system for RO has been developed and investigated to control concentration polarization and membrane fouling for improved flux and rejection [22-26]. Rotating RO system has been initially developed for recycling space mission wastewater for long-term space mission such as mission to Mars [27-30] although the technology may be used for most terrestrial RO applications. This article will review the physical basis for rotating filtration and describe recent work to apply it to RO.

2. Physics of Rotating RO

Rotating RO is similar to crossflow RO in that the mean flow is parallel to the filter surface, but the dynamics of rotating RO add forces that tend to keep the suspension species away from the membrane surface. These forces arise from the flow field that results when a membrane on an inner cylinder rotates within a fixed outer cylinder. The flow in the annulus of a rotating RO consists of a superposition between the cylinders, circular Couette flow around the axis of the membrane device, radial flow through the inner cylinder, and centrifugal sedimentation.

These flows are shown schematically in Fig. 2. The
axial annular Poiseuille flow carries the fluid through the device. The circular Couette flow provides a relatively high shear, like that in cross-flow filtration, to wash off the surface of the membrane. Since particles and colloids are typically more dense than the fluid phase of the suspension, the centrifugal acceleration felt by the particles and colloids causes them to sediment away from the filter and outward toward the outer cylinder. Another effect that may contribute to the efficient performance of the rotating RO is the presence of supercritical Taylor vortices, a secondary flow consisting of counter-rotating pairs of toroidal vortices stacked in the annulus and shown schematically in Fig. 3. Taylor vortex flow results from a centrifugal instability and occurs when the speed of the inner cylinder exceeds a critical value. Between the counter-rotating pairs of vortices are strong, jet-like radial outflow regions that tend to accelerate the particles toward the outer cylinder.

In Taylor-Couette flow devices including rotating RO, supercritical circular Couette flow appears as counter-rotating, toroidal vortices stacked in the annulus and superimposed on the stable solution [31]. The appearance of the vertical instability depends upon a dimensionless parameter known as the Taylor number, \(\text{Ta} = \frac{r_i \omega d}{\nu} \) where \(r_i \) is the radius of inner cylinder, \(\omega \) is the rotational speed, \(d = r_o - r_i \) is the gap width, \(r_o \) is the radius of outer cylinder, and \(\nu \) is the kinematic viscosity. The transition from stable Couette flow to the vortical Taylor-Couette flow occurs when the Taylor number exceeds a critical value (Ta_c). This phenomenon has been studied from both theoretical and experimental standpoints. Taylor [31] first conducted a simple flow visualization experiment to confirm his analytic prediction for the onset of the instability. Chandrasekhar [32], DiPrima and Swinney [33], Kataoka [34], and Koschmeider [35] provide extensive summaries of the abundant research on this topic since Taylor's pioneering work. A simple and practical way to estimate \(\text{Ta}_c \) in rotating RO system is to use a modified form given by Murase et al [13] that matches analytical results of Recktenwald et al [36]:

\[
\text{Ta}_c = 41.02 (d/r_o)^{-0.5} + 25.75 (d/r_o)^{0.5} + 1.85 (d/r_o)^{1.5}
\]

(1)

This expression matches the analytical value for \(\text{Ta}_c \) to within 0.5% over all radius ratio, \(\eta = r_i/r_o \). Beyond the first transition to Taylor vortex flow, additional flow modes including wavy vortex, turbulent wavy vortex, and turbulent vortex exist [37-39]. DiPrima and Swinney [37] have compiled a summary of experimental results to show that turbulence typically appears above values of \(\text{Ta}/\text{Ta}_c \) greater than 10-12 for radius ratios between 0.8 and 1.

Although several researchers have conducted experi-

Fig. 3. Flow patterns between rotating concentric cylinders.
ments related to rotating filtration [10,11,13,15-17,40,41,42], the relative importance of the shear due to the rotation of the inner cylinder, the sedimentation of particles, and the secondary motion of the Taylor vortices to the effectiveness of a rotating filtration has not been studied prior to the works by Werely et al [43], Akoun and Lueptow [44] and Schwille [45]. Recent measurements using Particle Image Velocimetry (PIV) revealed that the redistribution of azimuthal momentum by the vortices enhanced the rotational shear in rotating filtration [43,44]. This high rotational shear supplemented by the shear due to the axial flow and centrifugal sedimentation appears to be the key factor in preventing fouling [45]. The rotational shear also reduces the degree of concentration polarization at the surface of the RO membrane, allowing high flux and rejection in rotating RO [22,23,26].

3. Mass Transfer and Concentration Polarization in Rotating RO

Concentration polarization is defined as the accumulation of excess solutes and particles in a thin layer adjacent to the membrane surface. Concentration polarization is inherent of all membrane processes, resulting in an increased resistance to solvent flow and a reduction in permeate flux. The difference between the solute concentration at the membrane, \(C_{m,i} \), and the solute concentration in the bulk solution, \(C_{b,i} \), originates from the concentration polarization phenomenon. On the basis of the film model theory and from Fick’s law for diffusion, the concentration profile near the membrane surface is [18,46]:

\[
\frac{C_{m,i} - C_{b,i}}{C_{p,i} - C_{b,i}} = e^{-\frac{J_v}{k_t}}
\]

(2)

where \(k_t \) is the mass transfer coefficient for the back diffusion of the solute \(i \) from the membrane to the bulk solution on high pressure side of membrane; \(J_v \) is the solvent flux, and \(C_{p,i} \) is the solute concentration in the permeate [47]. Thus, the growth of the concentration boundary layer is determined by the mass transfer coefficient, \(k_t \), which in turn depends on the axial and rotational motion of the fluid.

Many researches have experimentally and theoretically investigated the radial mass transfer in Taylor-Couette flow. Generally, the mass transfer equations in Taylor-Couette flow satisfy the relation [48]:

\[
Sh = A \left[Ta(d/r_v)^{1/2} \right]^{a} Sc^{b}
\]

(3)

where \(Sh = 2kd/D \) is the dimensionless mass transfer rate (Sherwood number), \(Sc = \nu/D \) is the Schmidt number, \(D \) is the diffusion coefficient of the solute, and \(A, a, b \) are the constants [17,49]. Most previous studies of mass transfer for rotating systems conclude that \(A = 0.4 - 1.1 \), and \(a = 0.4 - 0.7 \) under vortical flow conditions. However, most results in the literature were for measurements of the mass transfer coefficient for filtration of suspensions in a cylindrical porous rotating cell or the transport of a chemical species in a cylindrical chemical reactor with a nonporous inner cylinder. Lee and Lueptow [26,50] have measured the mass transfer coefficients in rotating RO and compared them with the results in literature. Using a rearranged form of Eqn (4), the mass transfer coefficients were estimated based on a relatively simple experiment where the permeate flux, applied pressure difference, bulk solute concentration, and permeate concentration are measured [26]:

\[
k_t = \frac{J_v}{\ln \left(\frac{1}{RT} \left(\frac{\Delta P - J_v}{L_v} \right) / (C_{b,i} - C_{b,s}) \right)}
\]

(4)

where \(R \) is the gas constant, \(T \) is the temperature, \(\Delta P \) is the transmembrane pressure, and \(L_v \) is the solvent transport parameter of the membrane. They provided two different correlations depending on the flow regimes:

\[
Sh = 2.15 \left[Ta(d/r_v)^{1/2} \right]^{0.8} Sc^{1/3} \text{ for non-vortical flow}
\]

(5)
Fig. 4. Mass transfer correlations in rotating RO. (reproduced from [26]) Filled symbols indicate the experimental data. Error bars are smaller than the symbol size except in cases where error bars are shown. Bold lines indicate a least squares fit. (●: NaCl, 6 atm; ▲: NaCl, 8 atm; ◆: NaCl, 10 atm; ●: Na₂SO₄, 10 atm). 1. Holechekovsky and Cooney [17], 2. Baier [48], 3. Mizushima [51], 4. Kawase and Ulbrecht [53], 5. Coeuret and Legrand [52], 6. Kataoka, Doi, and Komai [34].

\[\text{Sh} = 1.05 \left(\frac{Ta(d/r)}{r/2} \right)^{0.16} \left(\frac{Sc}{r/2} \right)^{0.53} \] for vortical flow (6)

Fig. 4 shows the dependence of the experimentally measured mass transfer coefficient, represented as Sh/Sc^{1/3}, on the Taylor number. The Sherwood number increases with Taylor number as the rotational shear increases. In addition, the Sherwood number jumps to a higher value at the transition from non-vortical to vortical flow as the vortices redistribute azimuthal momentum leading to a higher shear and better mass transfer [26]. The thick solid lines through the data indicate the least squares fit for each flow regime corresponding to the following equations. Fig. 4 also compares the results for rotating RO with previous studies for rotating systems (but not for rotating RO) using various methods including electrochemical methods for non-porous inner cylinders [34,51,52], an ultrafiltration system [17,40], a helical-tube analogy [53], and a theoretical model based on the boundary layer theory [48,49]. The Sherwood numbers measured for rotating RO are slightly higher than those for other rotating systems, although the trend is consistent with previous measurements in different systems. Table 1 summarizes mass transfer correlations in Taylor-Couette flow devices including rotating RO.

Table 1. Summary of the estimations for the mass transfer in various Taylor-Couette flow devices

<table>
<thead>
<tr>
<th>Method for Measurement</th>
<th>A</th>
<th>a</th>
<th>(r/\theta)</th>
<th>Re_m</th>
<th>Ta(d/r)^{1/2}</th>
<th>Sc</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrode</td>
<td>0.21</td>
<td>0.7</td>
<td>1/3</td>
<td>0.79</td>
<td>0</td>
<td>>48500</td>
<td>770-8000</td>
</tr>
<tr>
<td>Electrode</td>
<td>0.38</td>
<td>0.5</td>
<td>1/3</td>
<td>0.143, 0.286</td>
<td>30-300</td>
<td>135-1600</td>
<td>1380-6450</td>
</tr>
<tr>
<td>Electrode</td>
<td>0.59</td>
<td>0.5</td>
<td>1/3</td>
<td>0.429</td>
<td>30-300</td>
<td>700-3700</td>
<td>1380-6450</td>
</tr>
<tr>
<td>Electrode</td>
<td>0.42</td>
<td>0.5</td>
<td>1/3</td>
<td>0.286</td>
<td>30-300</td>
<td>280-1800</td>
<td>1380-6450</td>
</tr>
<tr>
<td>Electrode</td>
<td>0.43</td>
<td>0.49</td>
<td>1/3</td>
<td>0.62</td>
<td>0</td>
<td>100-9200</td>
<td>3000-80000</td>
</tr>
<tr>
<td>Electrode</td>
<td>0.12</td>
<td>0.7</td>
<td>0.356</td>
<td>0.7-5.94</td>
<td>0</td>
<td>1600-160000</td>
<td>835-11490</td>
</tr>
<tr>
<td>Electrode</td>
<td>0.09</td>
<td>0.5</td>
<td>1/3</td>
<td>0.62, 0.82</td>
<td>0</td>
<td>59-19500</td>
<td>3000-77000</td>
</tr>
<tr>
<td>Falling film</td>
<td>0.58</td>
<td>0.52</td>
<td>1/3</td>
<td>0.15</td>
<td>140-2600</td>
<td>200-2000</td>
<td>1.74</td>
</tr>
<tr>
<td>Falling film</td>
<td>0.19</td>
<td>0.7</td>
<td>1/3</td>
<td>0.312</td>
<td>33-100</td>
<td>200-680</td>
<td>1260</td>
</tr>
<tr>
<td>Gas reactor</td>
<td>0.46</td>
<td>0.482</td>
<td>1/3</td>
<td>0.62</td>
<td>0-50</td>
<td>650-1950</td>
<td>-</td>
</tr>
<tr>
<td>Gas reactor</td>
<td>0.13</td>
<td>0.72</td>
<td>1/3</td>
<td>0.095</td>
<td>2-200</td>
<td>40-2000</td>
<td>350-420</td>
</tr>
<tr>
<td>Ultrafiltration</td>
<td>0.07</td>
<td>0.62</td>
<td>1/3</td>
<td>0.143</td>
<td>150</td>
<td>450-3500</td>
<td>17000</td>
</tr>
<tr>
<td>Ultrafiltration</td>
<td>0.03</td>
<td>0.148</td>
<td>1/3</td>
<td>0.04-0.148</td>
<td>25-300</td>
<td>68-9740</td>
<td>21600</td>
</tr>
<tr>
<td>Theoretical Analysis</td>
<td>1.65</td>
<td>2/3</td>
<td>1/3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Theoretical Analysis</td>
<td>1.1</td>
<td>0.46</td>
<td>1/3</td>
<td>0.143, 0.286, 0.429</td>
<td>0</td>
<td>130-1600</td>
<td>>>1</td>
</tr>
<tr>
<td>Theoretical analysis</td>
<td>0.68</td>
<td>1/2</td>
<td>1/3</td>
<td>-</td>
<td>0</td>
<td>100-1000</td>
<td>> 10</td>
</tr>
<tr>
<td>RO (vortical flow)</td>
<td>1.05</td>
<td>0.51</td>
<td>1/3</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RO (non-vortical flow)</td>
<td>2.15</td>
<td>0.18</td>
<td>1/3</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Membrane J. Vol. 13, No. 3, 2003
4. Analysis of Rotating RO System

Few works have been done to analyze the characteristics of rotating RO systems prior to recent studies by Lee and Lueptow [22-24]. They applied the solution-diffusion model modified with the concentration polarization theory to theoretically predict the performance of rotating RO over a wide range of conditions. In the solution-diffusion model, the solvent flux, \(J_s(x,t) \), and the flux of solute component \(i, \) \(J_{s,i}(x,t) \), through the inner cylinder membrane are [18,46]:

\[
J_s = L_s(\Delta P - P_{in})
\]

(7)

\[
J_{s,i} = J_s C_{p,i} = L_s (C_{m,i} - C_{s,i})
\]

(8)

where \(L_s \) is the solute transport parameter and \(P_{in}(x,t) \) is the pressure loss by osmotic pressure and hydrodynamic effects in the annulus. \(P_{in} \) in a rotating RO membrane system with axial flow includes four terms:

\[
P_{in} = \sum \Delta H_i + \Delta P_{osm} + \Delta P_{visc} + \rho g x
\]

(9)

where \(\Delta H_i(x,t) \) is the osmotic pressure difference for solute \(i, \) \(\Delta P_{osm} \) is the pressure drop across the annulus gap in the rotating membrane module, \(\Delta P_{visc} \) is the pressure drop caused by axial flow in the annulus, and \(\rho g x \) is the hydrostatic pressure. The osmotic pressure is calculated by Van't Hoff's equation [54]:

\[
\Delta H_i = (C_{m,i} - C_{s,i})RT
\]

(10)

For the conditions in rotating RO, \(\Delta P_{osm}, \Delta P_{visc}, \) and \(\rho g x \) are negligible compared to \(\Delta H_i \) [23].

Rearranging Eqn (2), the equation for concentration polarization effect, the solute concentration at the membrane surface \((C_{m,i}) \) can be estimated from the solute concentration in the bulk phase, the permeate concentration, and the water flux. During the filtration, \(J_s, \) \(C_{s,h} \) and \(C_{p,i} \) depend on axial position and time.

From a mass balance of solute \(i, \) the time rate of change in \(C_{s,i} \) in an annular fluid element is given by

\[
\frac{\partial C_{s,i}(x,t)}{\partial t} = - \frac{1}{S_a} \left(Q_{conc}(x,t) + 2\pi r_1 \int_s^{r_2} J_{s,i}(x,t) \, dx \right) \times \frac{\partial C_{s,i}(x,t)}{\partial x} + 2\pi r_1 \cdot J_{s,i}(x,t)
\]

(11)

In Eqn (11), \(S_a = \pi (r_2^2 - r_1^2) \) is the cross-sectional area of the annulus, and \(Q_{conc} \) is the concentrate flow rate. The left hand side is the change in concentration of solute \(i \) in the fluid element. The first two terms on the right hand side are the changes in concentration due to axial flux of solute. The last term is the change in concentration due to the flux of solute through the membrane. This model does not account for flow effects near the inlet or outlet, which are negligible based on previous experience with rotating filtration devices [27-32]. The initial condition is that the bulk concentration in the annulus equals the constant inlet concentration so \(C_{s,i}(x,0) = C_{s,i}(0,i) = C_{f,i} \), where \(C_{f,i} \) is the solute concentration of the feed. By simultaneously solving Eqn (2), (5), (6), and (7)-(11) for a given geometry, the flux and solute concentrations can be calculated as functions of time and axial position [23].

The theoretical model provides insight into the filtration characteristics of rotating RO. The flux and solute rejections from model calculation are shown in Fig. 5 as functions of time. Although the pure water flux of the membrane is 130 L/m² hr, the permeate flux is substantially less because of the high osmotic pressure near the membrane. The flux decreases quite quickly as filtration proceeds because of the rapid increase in osmotic pressure as solute builds up in the annulus [22,23]. The solute rejections are initially high and decrease slightly with time.

The local permeate flux profiles for Fig. 5 at different times are shown in Fig. 6. Initially the flux is uniform, but the flux quickly drops off at the downstream end of the device because of the higher solute concentration there [23]. The difference in flux
Fig. 5. Variation of permeate flux and rejection with time for space mission wastewater in a rotating RO system. (reproduced from [23]) Modeling condition: \(\Delta P = 1800 \) kPa; \(\omega = 32 \) rpm (Ta/Ta_w=2.54). (○: Flux; ●: Detergent rejection; ■: Nitrogen Rejection; ▼: NaCl rejection)

Fig. 6. Local flux profiles of permeate for Figure 5 as a function of time and position. Modeling condition: \(\Delta P = 1800 \) kPa; \(\omega = 32 \) rpm (Ta/Ta_w=2.54). (reproduced from [23])

between the upstream and downstream ends increases with increasing in time. It is evident that membrane fouling occurs first at the downstream end of the module because of the high solute concentration.

Using a synthetic wastewater, Lee and Lueptow [24, 26] investigate the performance of rotating RO experimentally for a wide range of operating parameters and verified the theoretical model for rotating RO. They used a lab-scale test system to measure filtration characteristics for rotating RO. As illustrated in Fig. 7, the model matches the experimental results quite well.

The geometry of the device would be expected to play a role in the effectiveness of rotating RO. A narrow gap (\(\eta \) near 1) would result not only in a high shear but also in a higher critical Taylor number for the appearance of vortical flow. The dependence of permeate flux and solute rejection on the radius ratio, \(\eta = r/r_o \), was theoretically investigated by Lee and Lueptow [23] as shown in Fig. 8. To change from 0.87 to 0.96, \(r \) is adjusted keeping \(r_o \) constant at 0.0286 m. The flux and rejection decrease with an increase in \(\eta \) except for 0 rpm where the flux and rejection increase. For nonzero rotation, the results can be attributed to the dependence of annulus volume on \(\eta \). Larger \(\eta \) results in a smaller annulus volume that makes rate of increase in concentration in the annulus faster leading to lower flux and rejection. At 0 rpm, however, the annulus volume effect is negligible because of the high concentration polarization. Instead, an increase in \(\eta \) results in an increasing axial shear because of the narrower annular gap. This shear is negligible in dynamic filtration cases compared to the rotational shear. The sudden drops in flux for vortical

Membrane J. Vol. 13, No. 3, 2005
Flow (Ta/Ta_k of 1.1, 2.0 and 4.0) can be attributed to the stability of Taylor vortices. The critical Taylor number increases with increasing \(\eta \). The sudden drops in flux correspond to the radius ratio at which the flow changes from vortical to non-vortical at that rotational speed. The magnitude of the drop in the flux is indicative of how important vortical flow is to enhancing the flux. Unlike the radius ratio, the aspect ratio \(r/L \) of the module does not affect the performance of rotating RO [23].

In addition to the geometric parameters, operating conditions including concentrate flow rate, transmembrane pressure, and rotational speed play an important role in rotating RO membrane performance. In Fig. 9, contours of constant flux and total ion rejection are shown as functions of rotational speed and transmembrane pressure. As expected, the best flux and rejection occur at high rotational speeds and high transmembrane pressures. However, dependence of flux and rejection on rotational speed and transmembrane pressure is not linear. The flux and rejection are suddenly increased at \(\omega = 9.26 \text{ rpm} \) because of the flow transition from non-vortical flow to Taylor vortex flow [55]. An increase in the transmembrane pressure results in higher flux and rejection for both non-vortical flow and Taylor vortex flow conditions, but the effect depends on the rotational speed [56]. Thus, increasing transmembrane pressure and rotational speed enhances flux more than simply increasing the rotational speed alone.

The concentrate flow rate \((Q_{\text{conc}}) \) also affects the flux and rejection. Flux and rejection increase as the \(Q_{\text{conc}} \) increases because the high flow rate washes solute out of the device [24,26]. However, \(Q_{\text{conc}} \) also affects the recovery of permeate. The recovery decreases with an increased \(Q_{\text{conc}} \) because more fluid is washed out of the system instead of being forced through the membrane [26]. Thus, it is important to increase transmembrane pressure as the concentrate flow is increased to ensure high flux as well as high recovery.

5. Summary

Rotating RO offers breakthrough technology for controlling concentration polarization and membrane
foiling, which are major obstacles in applying conventional RO techniques. The unique hydrodynamic features based on the centrifugal instability result in enhanced transport of contaminants away from the RO membrane surface, reducing the accumulation of solute near the membrane surface and the subsequent flux decline. This novel technology holds great promise for spin-off terrestrial applications of great importance including drinking water treatment, wastewater treatment, and waste stream reduction. While rotating RO has been investigated to recycle the wastewater in a spacecraft [27-30,57,58], prevent scale formation in water softening [25,59], and control biofouling on RO membranes [60], the technology is still in its early stages of development because of its complex hydrodynamic characteristics and lack of information on the design and operation. Substantial work is necessary to understand the physics underlying rotating RO and broaden its application for water and wastewater treatment.

References

29. R. M. Lueptow, “Advancing Rotating Membrane Water Purification for Human Life Support in

