• Title/Summary/Keyword: Dynamic Simulation Model

Search Result 2,968, Processing Time 0.03 seconds

A Study on the Alternative Plan for Prevention of Marine Accident using System Dynamic (SD법을 이용한 해양사고 예방의 정책대안 분석)

  • Keum, Jong-Soo;Jang, Woon-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.17-22
    • /
    • 2004
  • Ship is bring operated under a highly dynamic environments and many factors are related whit marine accident and those factors are interacting. An analysis on the marine accident is very important to prepare countermeasures which will ensure the safe navigation. This paper aims to build a model of the causes and improved policy for marine accident using SD(System Dynamics} approach and to measure a effect which is risk control countermeasures of marine accident. The methodology of this paper is to perform the causes and improved policy for marine accident using Brainstorming method and was to changed by quantitutive, qualitative factors and their feedback loops in casual map. This model was performed over 23 years($1997\~2020$) in a standard simulation model and 4 policy simulation models.

  • PDF

Dynamic Modeling of 2 DOF Parallel Manipulator (2 자유도 병렬 메니퓰레이터의 동적 모델링)

  • Lee, Jong Gyu;Lee, Sang Ryong;Lee, Choon Young;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.897-904
    • /
    • 2014
  • In this paper, two-DOF parallel manipulator has the sliders which execute a linear reciprocating motion depending on parallel guides and the end-effector which can be adjusted arbitrarily. To investigate the dynamic characteristics of the manipulator, the dynamic performance index is used. The index is able to be obtained by the relation between the Jacobian matrix and the inertia matrix. The kinematic and the dynamic analysis find these matrices. Also, the dynamic model of the manipulator is derived from the Lagrange formula. This model represents complicated nonlinear equations of motion. With the simulation results of the dynamic characteristic of the manipulator, we find that the dynamic performance index is based on the selection of the ranges for the continuous movement of the manipulator and the dynamic model derived can be used to the control algorithm development of the manipulator.

A Dynamic Model of a Gas Engine-Driven Heat Pump in Cooling Mode for Real-Time Simulation

  • Shin, Young-Gy;Yang, Hoon-Cheul;Tae, Choon-Seob;Jang, Cheol-Yong;Cho, Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.85-93
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for the design of control algorithm. The dynamic model of a GHP was based on conservation laws of mass and energy. For the control of refrigerant pressures, actuators such as an engine throttle valve, outdoor fans, coolant three-way valves and liquid injection valves were controlled by P or PI algorithm. The simulation results were found to be realistic enough to be applied for the control algorithm design. The model could be applied to build a virtual real-time GHP system so that it interfaces with a real controller for the purpose of developing control algorithm.

Chatter Prediction in Endmilling Using Dynamic Cutting Force Modeling (엔드밀링에서의 동절삭력 모델을 이용한 채터예측)

  • Hwang , Cheol-Hyun;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.104-115
    • /
    • 1999
  • Cutting process, in general, is a closed-loop system consisting of structural dynamics and cutting dynamics, with the cutting forces and the relative displacements between tool and workpiece being the associated variables. There have been a number of works on modeling the cutting process of endmilling, most of which assumed that either one of the tool or workpiece be negligible in tis displacement. In this paper, the relative displacement between tool and workpiece was considered. The proposed model used experimental modal analysis for structural dynamics and an instantaneous uncut chip thickness model for cutting dynamics. Simulation of the model, a time varying cutting system, was performed using 4th order Runge-Kutta method. Subsequent simulation results were utilized to predict chatter over a variety of experiments in slotting operation, showing good agreement.

  • PDF

An Optimal Design of a two stage relief valve by Genetic Algorithm

  • Kim, seungwoo;doowan Im;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.66.2-66
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determin...

  • PDF

Design and Implementation of Parking Guidance System Based on Internet of Things(IoT) Using Q-learning Model (Q-learning 모델을 이용한 IoT 기반 주차유도 시스템의 설계 및 구현)

  • Ji, Yong-Joo;Choi, Hak-Hui;Kim, Dong-Seong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.153-162
    • /
    • 2016
  • This paper proposes an optimal dynamic resource allocation method in IoT (Internet of Things) parking guidance system using Q-learning resource allocation model. In the proposed method, a resource allocation using a forecasting model based on Q-learning is employed for optimal utilization of parking guidance system. To demonstrate efficiency and availability of the proposed method, it is verified by computer simulation and practical testbed. Through simulation results, this paper proves that the proposed method can enhance total throughput, decrease penalty fee issued by SLA (Service Level Agreement) and reduce response time with the dynamic number of users.

Development of Numerical Analysis Model to Estimate the Contact Force between the Pantograph and Catenary of a High-speed Train (고속 철도 차량용 판토그래프와 가선계의 접촉력 예측을 위한 수치 해석 모델 개발)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Paik, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.461-467
    • /
    • 2011
  • This study aims to create a numerical analysis model which can investigate the dynamic interaction between pantograph and overhead contact wire used for a high-speed railway vehicle, and validate the simulation results according to EN 50318 standard. Finite element analysis models of pantograph and overhead contact line are created using SAMCEF, a commercial FE analysis program. The mean, standard deviation, maximum and minimum values of contact forces are obtained. The simulation results are validated according to EN 50318, and the possibility of simulating the collecting characteristic of an actual pantograph system by using the developed model is discussed.

Brake Force simulation of a High Speed Train Using a Dynamic Model (동적 모델에 의한 고속전철의 제동력 시뮬레이션)

  • Lee, Nam-Jin;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-53
    • /
    • 2002
  • The brake system of a high speed train has a crucial role for the safety of the train. To develop a safe brake system of the high speed train, it is necessary to understand the braking principle and phenomena of the total brake system and its subsystems. In this paper, we have suggested a mathematical model which includes car dynamics, interactions between cars, adhesive forces, brake blending algorithm, and the dynamics of each brake devices. Also, we have proposed a ready-time compensation algorithm of eddy-current brake system and a brake control logic on electric-pneumatic blending. A simulation study has shown the proposed models and algorithms are effective on the braking of the train.

A Pspice Model of MOS-Controlled Thyrister for Circuit Simlulation (회로 시뮬레이션을 위한 MOS 제어 다이리스터의 PSPICE 모델)

  • Lee, Young-Kook;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.382-384
    • /
    • 1995
  • The advancement of power semiconductor devices has given great attribution to the performance and reliability or power conversion systems. But contemporary power devices have room for improvement. So much interest and endeavor are being applied to develop an improved power devices. The MOS-Controlled Thyristor(MCT)is a recently developed power device which combines four layers thyristor structure and MOS-gate. Owing to advantages compared to other devices in many respects, the MCT attracts much notice recently. Nowadays, in designing and manufacturing power conversion systems, the importance of circuit simulation for reducing cost and time is incensed. And to excute the simulation that resemble the real system as much as possible, to develop a model of power device that provides properly static and dynamic characteristics is important. So, this paper presents a PSPICE model of the MCT considering dynamic characteristics.

  • PDF

Developing Analysis Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델 개발)

  • Dae Kyung Noh;Dong Won Lee;Taek June Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • From the perspective of dental chair manufacturers, it is important to of localizing hydraulic system in order to secure market competitiveness. This study aims to develop the analysis model of a dental chair which overseas companies secure core technologies. The study follows the steps below. First, the component parts of the solenoid valve unit of a foreign leading company are analyzed and implemented in virtual environment. Second, dynamic behavior scenario is established based on solenoid valve signal chart provided by a foreign leading company. The analysis model is verified and its performance is analyzed using dynamic behavior according to each scenario. Third, a simulation is carried out to determine whether the cylinder velocity of designed hydraulic system surpasses 1cm/s as required by the design.