• Title/Summary/Keyword: Dynamic Defense

Search Result 430, Processing Time 0.026 seconds

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading (충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구)

  • Min, Gyeong-Jo;Fukuda, Daisuke;Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

Development and Performance Compensation of the Extremely Stable Transceiver System for High Resolution Wideband Active Phased Array Synthetic Aperture Radar (고해상도 능동 위상 배열 영상 레이더를 위한 고안정 송수신 시스템 개발 및 성능 보정 연구)

  • Sung, Jin-Bong;Kim, Se-Young;Lee, Jong-Hwan;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.573-582
    • /
    • 2010
  • In this paper, X-band transceiver for high resolution wideband SAR systems is designed and fabricated. Also as a technique for enhancing the performance, error compensation algorithm is presented. The transceiver for SAR system is composed of transmitter, receiver, switch matrix and frequency generator. The receiver especially has 2 channel mono-pulse structure for ground moving target indication. The transceiver is able to provide the deramping signal for high resolution mode and select the receive bandwidth for receiving according to the operation mode. The transceiver had over 300 MHz bandwidth in X-band and 13.3 dBm output power which is appropriate to drive the T/R module. The receiver gain and noise figure was 39 dB and 3.96 dB respectively. The receive dynamic range was 30 dB and amplitude imbalance and phase imbalance of I/Q channel was ${\pm}$0.38 dBm and ${\pm}$3.47 degree respectively. The transceiver meets the required electrical performances through the individual tests. This paper shows the pulse error term depending on SAR performance was analyzed and range IRF was enhanced by applying the compensation technique.

Aeroelastic Compatibility Substantiation of Aircraft External Stores Using the Dynamic Characteristic Data from Ground Vibration Test (지상진동시험 동특성 데이터를 활용한 항공기 외부장착물의 공력탄성학적 적합성 입증)

  • Lim, Hyun Tae;Kwon, Jae Ryong;Byun, Kwan Hwa;Kim, Hee Joong;Kim, Jae hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.269-275
    • /
    • 2017
  • The aeroelastic stability of a fighter type aircraft can be severly affected by the store mass, aerodynamic characteristics, and store combinations. Hence, the stability for the all store configurations must be substantiated before the aircraft in service. For the aeroelastic analysis, the design data and information for the aircraft structure, mass distribution, control surface characteristics, and external shape etc. are required. This is the reason that the store compatibility substantiations by a third party are restricted. However, according to the change of operational environment or the improvement of avionic technology, a new external store is developed and it should be installed on an aircraft without the support from the original supplier. This paper describe the process to substantiate the aeroelastic compatibility between a new external store and an imported aircraft whose design data is not available to a third party operating the aircraft.

Reproduction of Cyclic Triaxial Behavior of Unsaturated Soil using Element Simulation (요소 시뮬레이션에 의한 불포화토의 반복삼축거동 재현)

  • Lee, Chungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.5-14
    • /
    • 2015
  • Suction affects the unsaturated soil as the negative pore pressure, and leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Hence, in this study, in order to account for these effects of suction under the dynamic loading condition such as the earthquake, the element simulation of the cyclic triaxial test using induced stress-strain relation based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the $1^{st}$ and the $2^{nd}$ yield functions was conducted. Through the stress path, stress-strain relation and relation between volumetric strain and axial strain, it was seen in all the cases that the simulation results demonstrated a good agreement with the experimental results. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.

A Distributed Dynamic Address Assignment for Tactical Mobile Ad-hoc Networks (전술 MANET에서 그룹 단위 분산된 동적 주소 할당 기법)

  • Park, Mun-Young;Lee, Jong-Kwan;Baek, Ho-Ki;Kim, Du-Hwan;Lim, Jae-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.327-335
    • /
    • 2014
  • In this paper, we propose a group distributed dynamic address assignment scheme suitable for tactical mobile ad hoc networks(MANET). Efficient address assignment is an important issue in the MANET because a node may frequently leave the current network and join another network owing to the mobility of the node. The conventional schemes do not consider the features of the tactical networks: existence of a leader node and network activity on a group basis. Thus, they may not be suitable for military operations. In our proposed scheme, called grouped units dynamic address assignment protocol(G-DAAP), a leader node maintains the address information for the members in the network and any of the nodes can exploit the information for the assignment or request of the IP address by a simple message exchange procedure. This leads to fast address assignment with small overheads. In addition, G-DAAP based on the modified IEEE 802.11e Enhanced Distributed Channel Access(EDCA) can assign addresses more quickly. We describe the delay performance of the G-DAAP and compare it with conventional schemes by numerical analysis and computer simulations. The results show that the G-DAAP significantly improves the delay performance as compared with the conventional schemes.

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

Fabrication and Inertia Dynamic Friction Properties of Pitch-based Carbon-Carbon Composites

  • Lee, Jinyong;Suhr, Dong-Soo;Lim, Yun-Soo;Lee, Seung-Goo;Park, Jong-Kyoo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.193-198
    • /
    • 1998
  • This paper presents the effects of an initial braking velocity, a braking pressure, and the number of braking stop on the tribological behaviors for the three different C-C composites using an inertia dynamic-friction tester. The C-C composites were prepared through the processes of several cycles of pitch impregnation/carbonization with different friction surface texture such as continuous 8-harness satin fabric (ADD-1), chopped fiber (ADD-2) and chopped fiber (ADD-3) having higher fiber volume fraction on friction than ADD-2 by about 10%. ADD-1 exhibited a higher fraction coefficient (0.41~0.33) than those of ADD-2 and ADD-3 (0.32~0.26) under the various initial braking velocities and braking pressures. The fraction coefficients decreased with increasing the initial velocity and the braking pressures. Wear rate by the thickness change after every 25 stop indicated that ADD-2 and ADD-3 having 1.7~2.7 $\mu\textrm{m}$/stop/pair were much lower than that of ADD-1 showing 5.0~6.5 $\mu\textrm{m}$/stop/pair. All specimens showed a little bit lower wear rate during the middle stage than the initial and latter stages among 100 braking stops. ADD-1 showed higher friction coefficient and wear rate due to the active pull-out of the fibers, evidenced by thicker were film and wear debrises.

  • PDF

Dynamic Calibration Coefficients Estimation with Linear Interpolation for Uncooled TEC-less IRFPA (비냉각형 TEC-less 열상 시스템에 적합한 선형보간 기반 동적 보정 계수 추정 기법)

  • Han, Sang-Hyuck;Kwak, Dong-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.98-102
    • /
    • 2012
  • These days, Uncooled IR Systems are more popular in the area of defense and aerospace than before. Uncooled IR Systems are widely used as core technology for making unmanned systems and detecting enemy objects during the day and night in the distance. Recently, researches on TEC-less IRFPA have been increased to minimize the power consumption and to make a smaller system than before. For this, it needs to find adequate NUC(Non-Uniformity Correction) coefficients as FPA(Focal Plane Array) temperature changes. In this paper, we propose a new NUC coefficient estimating technique, DCCE-LI(Dynamic Calibration Coefficients Estimation with Linear Interpolation), for TEC-less IRFPA. It is based on a linear interpolation method and it can estimate NUC coefficients in real-time. So, by testing and evaluating it with some IR images, we conclude that the quality of IR images using proposed method is better than applying static coefficients.

Inducing stress-strain relationship for element simulation of cyclic triaxial test on unsaturated soil (불포화토에 대한 반복삼축압축시험의 요소시뮬레이션을 위한 응력-변형율 관계의 수립)

  • Lee, Chung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5654-5663
    • /
    • 2015
  • In the unsaturated soil, suction, the negative pore water pressure leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Therefore, in this study, the stress-strain relationship based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the 1st and the 2nd yield functions was induced in order to account for these effects of suction under the dynamic loading condition such as the earthquake. Through the program code considering this relationship and the routine of the cyclic loading with the reversion of loading direction, the numerical simulation of the cyclic triaxial test under the unsaturated condition would be possible. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.