Abstract
This paper presents the effects of an initial braking velocity, a braking pressure, and the number of braking stop on the tribological behaviors for the three different C-C composites using an inertia dynamic-friction tester. The C-C composites were prepared through the processes of several cycles of pitch impregnation/carbonization with different friction surface texture such as continuous 8-harness satin fabric (ADD-1), chopped fiber (ADD-2) and chopped fiber (ADD-3) having higher fiber volume fraction on friction than ADD-2 by about 10%. ADD-1 exhibited a higher fraction coefficient (0.41~0.33) than those of ADD-2 and ADD-3 (0.32~0.26) under the various initial braking velocities and braking pressures. The fraction coefficients decreased with increasing the initial velocity and the braking pressures. Wear rate by the thickness change after every 25 stop indicated that ADD-2 and ADD-3 having 1.7~2.7 $\mu\textrm{m}$/stop/pair were much lower than that of ADD-1 showing 5.0~6.5 $\mu\textrm{m}$/stop/pair. All specimens showed a little bit lower wear rate during the middle stage than the initial and latter stages among 100 braking stops. ADD-1 showed higher friction coefficient and wear rate due to the active pull-out of the fibers, evidenced by thicker were film and wear debrises.