DOI QR코드

DOI QR Code

Development and Validation of the GPU-based 3D Dynamic Analysis Code for Simulating Rock Fracturing Subjected to Impact Loading

충격 하중 시 암석의 파괴거동해석을 위한 GPGPU 기반 3차원 동적해석기법의 개발과 검증 연구

  • 민경조 (전북대학교 공과대학 토목/환경/자원에너지공학부) ;
  • ;
  • 오세욱 (한국지질자원연구원) ;
  • 조상호 (전북대학교 공과대학 토목/환경/자원에너지공학부)
  • Received : 2021.06.07
  • Accepted : 2021.06.21
  • Published : 2021.06.30

Abstract

Recently, with the development of high-performance processing devices such as GPGPU, a three-dimensional dynamic analysis technique that can replace expensive rock material impact tests has been actively developed in the defense and aerospace fields. Experimentally observing or measuring fracture processes occurring in rocks subjected to high impact loads, such as blasting and earth penetration of small-diameter missiles, are difficult due to the inhomogeneity and opacity of rock materials. In this study, a three-dimensional dynamic fracture process analysis technique (3D-DFPA) was developed to simulate the fracture behavior of rocks due to impact. In order to improve the operation speed, an algorithm capable of GPGPU operation was developed for explicit analysis and contact element search. To verify the proposed dynamic fracture process analysis technique, the dynamic fracture toughness tests of the Straight Notched Disk Bending (SNDB) limestone samples were simulated and the propagation of the reflection and transmission of the stress waves at the rock-impact bar interfaces and the fracture process of the rock samples were compared. The dynamic load tests for the SNDB sample applied a Pulse Shape controlled Split Hopkinson presure bar (PS-SHPB) that can control the waveform of the incident stress wave, the stress state, and the fracture process of the rock models were analyzed with experimental results.

최근에는 GPGPU(General-Purpose computing on Graphics Processing Units)와 같은 고성능 연산장치의 보급과 함께 국방, 우주항공분야에서 암질재료에 대한 충격실험을 대신할 수 있는 3차원 동적해석기법의 개발이 활발하게 진행되고 있다. 그러나 높은 충격하중을 수반하는 암 발파 또는 소형미사일 등의 지중 관통과 같은 과정을 실험적으로 관찰하거나 계측하는 것은 암질재료의 비 균질성 및 불투명성 때문에 어려움이 있었다. 본 연구에서는 고속충돌에 의한 암석의 파괴 거동을 모사하기 위하여 3차원 동적 파괴 과정 해석 기법 (3D-DFPA)를 개발하였으며, 연산속도를 향상시키기 위하여 순차해석(explicity analysis) 및 접촉요소검색(Searching algolitm of contact elements)에 GPGPU연산이 가능한 알고리듬을 적용하였다. 제안된 동적파괴과정해석 기법에 대한 검증을 위해 Straight Notched Disk Bending (SNDB) 석회암시료에 대한 동적파괴인성시험을 모사하였고, 충격응력파의 전파과정, 암석-충격봉 경계면에서 반사 및 전달과정, 암석 시료의 파괴과정을 비교분석하여, 개발된 해석기법에 대한 검증을 수행하였다.

Keywords

Acknowledgement

This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 21CTAP-C164314-01).

References

  1. Cho, Sang Ho, Katsuhiko Kaneko, 2004, Influence of the applied pressure waveform on the dynamic fracture processes in rock, Int J Rock Mech Min Sci, Vol. 41, No. 5, pp. 771-784. https://doi.org/10.1016/j.ijrmms.2004.02.006
  2. Cho, Sang Ho, Yuji Ogata, Katsuhiko Kaneko, 2003, Strain-rate dependency of the dynamic tensile strength of rock, Int J Rock Mech Min Sci, Vol. 40, No. 5, pp. 763-777. https://doi.org/10.1016/S1365-1609(03)00072-8
  3. Cho, SH, HM Kang, MS Kim, H Eustache, M Kataoka, Y Obara, and K Xia, 2014, Determination of Dynamic Fracture Toughness of Rocks using Straight Notched Disk Bending (SNDB) Specimen, ISRM International Symposium-8th Asian Rock Mechanics Symposium.
  4. Fukuda, Daisuke, Kazuma Moriya, Katsuhiko Kaneko, Katsuya Sasaki, Ryo Sakamoto, and Keitaro Hidani, 2013, Numerical simulation of the fracture process in concrete resulting from deflagration phenomena, Int J Fract, Vol. 180, No. 2, pp. 163-175. https://doi.org/10.1007/s10704-013-9809-4
  5. Maheo, Laurent, Vincent Grolleau, and Gerard Rio, 2013, Numerical damping of spurious oscillations: a comparison between the bulk viscosity method and the explicit dissipative Tchamwa-Wielgosz scheme, Computational Mechanics, Vol. 51, No. 1, pp. 109-128. https://doi.org/10.1007/s00466-012-0708-8
  6. Munjiza, Antonio A., 2004, The combined finitediscrete element method, John Wiley & Sons.
  7. NVIDIA, 2013, TESLA K20 GPU accelerator board specification.
  8. Ruetsch, Greg, and Massimiliano Fatica, 2011, Cuda fortran for scientists and engineers, NVIDIA Corporation.
  9. Satish, Nadathur, Mark Harris, and Michael Garland, 2009, Designing efficient sorting algorithms for manycore GPUs, 2009 IEEE International Symposium on Parallel & Distributed Processing.
  10. Tutluoglu, Levent, Cigdem Keles, 2011, Mode I fracture toughness determination with straight notched disk bending method, Int J Rock Mech Min Sci, Vol. 48, No. 8, pp. 1248-1261. https://doi.org/10.1016/j.ijrmms.2011.09.019
  11. Zhang, Zhengyu, Glaucio H Paulino, and Waldemar Celes, 2007, Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials, Int J Numer Methods Eng, Vol. 72, No. 8, pp. 893-923. https://doi.org/10.1002/nme.2030