• Title/Summary/Keyword: Dual Sensor

Search Result 285, Processing Time 0.027 seconds

Survivability Evaluation Model in Wireless Sensor Network using Software Rejuvenation

  • Parvin, Sazia;Thein, Thandar;Kim, Dong-Seong;Park, Jong-Sou
    • Convergence Security Journal
    • /
    • v.8 no.1
    • /
    • pp.91-100
    • /
    • 2008
  • The previous works in sensor networks security have focused on the aspect of confidentiality, authentication and integrity based on cryptographic primitives. There has been no prior work to assess the survivability in systematic way. Accordingly, this paper presents a survivability model of wireless sensor networks using software rejuvenation for dual adaptive cluster head. The survivability model has state transition to reflect status of real wireless sensor networks. In this paper, we only focus on a survivability model which is capable of describing cluster head compromise in the networks and able to switch over the redundant cluster head in order to increase the survivability of that cluster. Second, this paper presents how to enhance the survivability of sensor networks using software rejuvenation methodology for dual cluster head in wireless sensor network. We model and analyze each cluster as a stochastic process based on Semi Markov Process (SMP) and Discrete Time Markov Chain (DTMC). The proof of example scenarios and numerical analysis shows the feasibility of our approach.

  • PDF

Current Sensor Offset Calibration Method using Dual Sensor for trans-less PV Inverter (듀얼 센서를 이용한 무변압기형 태양광 인버터 전류 센서의 오프셋 보정 방법)

  • Hong, Ki-Nam;Choy, Ick;Choi, Ju-Yeop;Lee, Young-Kwon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.182-187
    • /
    • 2012
  • Since PV PCS uses output current sensor for ac output current control, the sensor's sensing value includes unnecessary offset inevitably. If PV inverter is controlled by the included offset value, it's output current will generate DC offset. The DC offset of output current for trans-less PV inverter is fatal to grid, which results in saturating grid side transformer. Usually DSP controller of PV inverter reads several times sensing value during initial operation and, finally, it's average value is used for offset calibration. However, if temperature changes, the offset changes, too. Therefore, output current sensor measures sensing value that includes offset again. In this paper we propose new algorithm where two identical forward and reverse sensors are used to calculate the offset in real time. As a result the offset is not correlated with temperature change. The proposed algorithm is verified through PSIM simulation for validity.

  • PDF

Estimation of Specular Light Power by Adjusting Incident Laser Power for Measuring Mirror-Like Surface Roughness (경면 거칠기 측정을 위해 레이저 입사 강도 조정에 의한 정반사 광량 추정 알고리즘 개발)

  • 서영호;김주년;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.94-101
    • /
    • 2004
  • From the Beckmann's reflection model of wave incident, reflected light from a surface is known to have not only specular but also diffuse components. The specular component dominant a surface for a mirror-like surface is distributed on the almost the same area as the spot on the surface, but the diffuse component region dominant f3r a rough surface spreads scattered on the larger areas than the spot. Therefore, statistic parameters from the scattered light distribution are more meaningful in the diffuse region, while the magnitude of rather meaning in the specular region. In usual, there need two sensors to acquire two kinds of information: Photo-detector for light intensity magnitude and image sensor for light intensity distribution. But dual sensor scheme requires a beam splitter usually to feed light to each sensor, and moreover there is not a combination rule to relieve the different sensor characteristics. In this study a new method is proposed for acquisition of the dual information using only an image sensor. Specular region is established on an image area being distinguished from a diffuse component, and laser power is adjusted so that no pixel of the image sensor in the specular region is saturated. Simulation based on the light reflection theory and the experimental results are quite well matched, and thus the proposed method was proved to be very useful for mirror-like surface measurement.

A 40fJ/c-s 1 V 10 bit SAR ADC with Dual Sampling Capacitive DAC Topology

  • Kim, Bin-Hee;Yan, Long;Yoo, Jerald;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • A 40 fJ/c-s, 1 V, 10-bit SAR ADC is presented for energy constrained wearable body sensor network application. The proposed 10-bit dual sampling capacitive DAC topology reduces switching energy by 62% compared with 10-bit conventional SAR ADC. Also, it is more robust to capacitor mismatch than the conventional architecture due to its cancelling effect of each capacitive DAC. The proposed SAR ADC is fabricated in 0.18 ${\mu}m$ 1P6M CMOS technology and occupies 1.17 $mm^2$ including pads. It dissipates only 1.1 ${\mu}W$ with 1 V supply voltage while operating at 100 kS/s.

Development of a Dual-arm Collaborative Robot System for Chemical Drum Assembly

  • Gi-Seong Kim;Sung-Hun Jeong;Shi-Baek Park;Han-Sung Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_1
    • /
    • pp.545-551
    • /
    • 2023
  • In this paper, a robot automation methodology for chemical drum assembly in semiconductor industries are presented. Robot automation is essential to resolve safety issues in which operators are directly or indirectly exposed to chemicals or fumes in assembling dispense heads on chemical drums. However, the chemical drum assembling process involves complex and difficult tasks, such as mating male/female keycodes and fastening screws with large-diameter, which may be very difficult to be performed by a single-arm robot with a commercial rigid F/T sensor. In order to solve the problems, a method for assembling a chemical drum using dual-arm collaborative robot system, compliance F/T sensor, robot vision and gripper is presented.

Green Synthesis of Dual Emission Nitrogen-Rich Carbon Dot and Its Use in Ag+ Ion and EDTA Sensing

  • Le Thuy Hoa;Jin Suk Chung;Seung Hyun Hur
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.463-471
    • /
    • 2023
  • Nitrogen-rich carbon dots (NDots) were synthesized by using uric acid as carbon and nitrogen sources. The as-synthesized NDots showed strong dual emissions at 420 nm and 510 nm with excitation at 350 nm and 460 nm, respectively. The physicochemical analyses such as X-ray photoelectron spectroscopy, Transmission electron microscopy and Fourier transform infrared spectroscopy were used to analyze the chemical, physical and morphological structures of NDots. The as-synthesized NDots exhibited wide linear range (0-100 µM) and very low detection limit (124 nM) in Ag+ ion sensing. In addition, Ag+ saturated NDots could be used as an EDTA sensor by the EDTA induced PL recovery.

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by using Infrared Sensor for Compensation (보상용 적외선 센서를 사용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.124-130
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was built with ASIC implemented thermopile sensor which included temperature sensor and unique elliptical waveguide structures in this paper. The temperature dependency of dual infrared sensor module ($CO_2$ and reference IR sensors) has been characterized and its output voltage characteristics according to the temperature and gas concentration were proposed for the first time. NDIR $CO_2$ gas and reference IR sensors showed linear output voltages according to the variation of ambient temperatures from 243 K to 333 K and their slopes were 14.2 mV/K and 8.8 mV/K, respectively. The output voltages of temperature sensor also presented a linear dependency according to the ambient temperature and could be described with V(T)=-3.191+0.0148T(V). The output voltage ratio between $CO_2$ and reference IR sensors revealed irrelevant to the changes of ambient temperatures and gave a constant value around 1.6255 with standard deviation 0.008 at 0 ppm. The output voltage of $CO_2$ gas sensor at zero ppm $CO_2$ gas consisted of two components; one is caused by the HPB (half pass-band) of IR filter and the other is attributed to the part of $CO_2$ absorption wavelength. The characteristics of output voltages of $CO_2$ gas sensor could be accurately modeled with three parameters which are dependent upon the ambient temperatures and represented small average error less than 1.5% with 5% standard deviation.

Design and Evaluation of a CMOS Image Sensor with Dual-CDS and Column-parallel SS-ADCs

  • Um, Bu-Yong;Kim, Jong-Ryul;Kim, Sang-Hoon;Lee, Jae-Hoon;Cheon, Jimin;Choi, Jaehyuk;Chun, Jung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.110-119
    • /
    • 2017
  • This paper describes a CMOS image sensor (CIS) with dual correlated double sampling (CDS) and column-parallel analog-to-digital converter (ADC) and its measurement method using a field-programmable gate array (FPGA) integrated module. The CIS is composed of a $320{\times}240$ pixel array with $3.2{\mu}m{\times}3.2{\mu}m$ pixels and column-parallel 10-bit single-slope ADCs. It is fabricated in a $0.11-{\mu}m$ CIS process, and consumes 49.2 mW from 1.5 V and 3.3 V power supplies while operating at 6.25 MHz. The measured dynamic range is 53.72 dB, and the total and column fixed pattern noise in a dark condition are 0.10% and 0.029%. The maximum integral nonlinearity and the differential nonlinearity of the ADC are +1.15 / -1.74 LSB and +0.63 / -0.56 LSB, respectively.

Feasibility study of SiPM based scintillation detector for dual-energy X-ray absorptiometry

  • Park, Chanwoo;Song, Hankyeol;Joung, Jinhun;Kim, Yongkwon;Kim, Kyu Bom;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2346-2352
    • /
    • 2020
  • Dual-energy x-ray absorptiometry (DXA) is the noninvasive method to diagnose osteoporosis disease characterized by low bone mass and deterioration of bone tissue. Many global companies and research groups have developed the various DXA detectors using a direct photon-counting detector such as a cadmium zinc telluride (CZT) sensor. However, this approach using CZT sensor has some drawback such as the limitation of scalability by high cost and the loss of efficiency due to the requirement of a thin detector. In this study, a SiPM based DXA system was developed and its performance evaluated experimentally. The DXA detector was composed of a SiPM sensor coupled with a single LYSO scintillation crystal (3 × 3 × 2 ㎣). The prototype DXA detector was mounted on the dedicated front-end circuit consisting of a voltage-sensitive preamplifier, pulse shaping amplifier and constant fraction discriminator (CFD) circuit. The SiPM based DXA detector showed the 34% (at 59 keV) energy resolution with good BMD accuracy. The proposed SiPM based DXA detector showed the performance comparable to the conventional DXA detector based on CZT.

Selective acetate detection using functional carbon nanotube fiber

  • Choi Seung-Ho;Lee, Joon-Seok;Choi, Won-Jun;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.357-363
    • /
    • 2021
  • We developed a chemiresistive anion sensor using highly conductive carbon nanotube fibers (CNTFs) functionalized with anion receptors. Mechanically robust CNTFs were prepared via wet-spinning utilizing the nematic liquid crystal properties of CNTs in chlorosulfonic acid (CSA). For anion detection, polymeric receptors composed of dual-hydrogen bond donors, including thiourea 1, squaramide 2, and croconamide 3, were prepared and bonded non-covalently on the surface of the CNTFs. The binding affinities of the anion receptors were studied using UV-vis titrations. The results revealed that squaramide 2 exhibited the highest binding affinity toward AcO-, followed by thiourea 1 and croconamide 3. This trend was consistent with the chemiresistive sensing responses toward AcO- using functional CNTFs. Selective anion sensing properties were observed that CNTFs functionalized with squaramide 2 exhibited a response of 1.08% toward 33.33 mM AcO-, while negligible responses (<0.1%) were observed for other anions such as Cl-, Br-, and NO3-. The improved response was attributed to the internal charge transfer of dual-hydrogen bond donors owing to the deprotonation of the receptor upon the addition of AcO-.