• Title/Summary/Keyword: Drop coating

Search Result 77, Processing Time 0.029 seconds

Effects of the Electrohydrodynamic Forces on Characteristics of Spray (전기수력학적 힘이 분무특성에 미치는 영향)

  • Lee, J.H.;Kwon, S.D.;Kim, S.H.;Moon, S.Y.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.44-51
    • /
    • 2001
  • The distributions of the SMD and behavior of 2% $NH_4H_2PO_4$ spray discharged from a fan-spray twin fluid type nozzle are measured and observed. The spray characteristics, according to the variation in the applied voltages, are demonstrated using the PMAS (particle Motion Analysis System) and the CCD camera, respectively. The preliminary experiments are executed to select an optimum condition for solidifying a galvanized coating layer in the uncharged condition before carrying out the main experiments. The liquid and air pressure of $0.07kgf/cm^2\;and\;0.15kgf/cm^2$ can be considered the optimum conditions to use in the main experiment. As the applied voltage increases, the frequent range of relatively large droplets diminishes. Thus, the distributions of drop diameter in the charged spray are more uniform than these in the uncharged condition. This is explained by recognizing that repulsive forces among droplets with the charges of the same sign cause them to be uniform.

  • PDF

Hydrophobicity and Nanotribological Properties of Silicon Channels coated by Diamond-like Carbon Films

  • Pham, Duc Cuong;Na, Kyung-Hwan;Pham, Van Hung;Yoon, Eui-Sung
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.1-5
    • /
    • 2009
  • This paper reports an investigation on nanotribological properties of silicon nanochannels coated by a diamond-like carbon (DLC) film. The nanochannels were fabricated on Si (100) wafers by using photolithography and reactive ion etching (RIE) techniques. The channeled surfaces (Si channels) were then further modified by coating thin DLC film. Water contact angle of the modified and unmodified Si surfaces was examined by an anglemeter using the sessile-drop method. Nanotribological properties, namely friction and adhesion forces, of the Si channels coated with DLC (DLC-coated Si channels) were investigated in comparison with those of the flat Si, DLC-coated flat Si (flat DLC), and Si channels, using an atomic force microscope (AFM). Results showed that the DLC-coated Si channels greatly increased hydrophobicity of silicon surfaces. The DLC coating and Si channels themselves individually reduced adhesion and friction forces of the flat Si. Further, the DLC-coated Si channels exhibited the lowest values of these forces, owing to the combined effect of reduced contact area through the channeling and low surface energy of the DLC. This combined modification could prove a promising method for tribological applications at small scales.

Effect of Fabricating Nanopatterns on GaN-Based Light Emitting Diodes by a New Way of Nanosphere Lithography

  • Johra, Fatima Tuz;Jung, Woo-Gwang
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Nanosphere lithography is an inexpensive, simple, high-throughput nanofabrication process. NSL can be done in different ways, such as drop coating, spin coating or by means of tilted evaporation. Nitride-based light-emitting diodes (LEDs) are applied in different places, such as liquid crystal displays and traffic signals. The characteristics of gallium nitride (GaN)-based LEDs can be enhanced by fabricating nanopatterns on the top surface of the LEDs. In this work, we created differently sized (420, 320 and 140 nm) nanopatterns on the upper surfaces of GaN-based LEDs using a modified nanosphere lithography technique. This technique is quite different from conventional NSL. The characterization of the patterned GaN-based LEDs revealed a dependence on the size of the holes in the pattern created on the LED surface. The depths of the patterns were 80 nm as confirmed by AFM. Both the photoluminescence and electroluminescence intensities of the patterned LEDs were found to increase with an increase in the size of holes in the pattern. The light output power of the 420-nm hole-patterned LED was 1.16 times higher than that of a conventional LED. Moreover, the current-voltage characteristics were improved with the fabrication of differently sized patterns over the LED surface using the proposed nanosphere lithography method.

Effect of ion implantation on the tribological properties of TiN-coated SKD 11 and SKD 61 (TiN 코팅된 SKD11과 SKD61의 내마모 성질레 미치는 이온주입 효과)

  • 장태석;이수완;문대원;방건웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.391-399
    • /
    • 1997
  • To figure out wheher the tribological properties of a hras-coating layer can be imporved by ion implantatio, TiN-coated SKD 11 61 were implanted with nitrogen ion and their wear peoperties were examined systematically. The amount of nitrgen ione implanted on the coating layer was $2 \times 10^{15},\;10^{16},\;10^{17},\;and\;10^{18}\;ions/\textrm{cm}^2$, respectively. X-ray diffraction revealed theintensity of the peaks belong TiN tended to increase as the ion dose increased, which implied that the implantation promoted the formation of TiN in the coated later. Howeverthe hardensity of the specimens increased then decreased again as the ion dose increased, resulting in a obvious drop of the hardness for the ion does of $2 \times 10^{18}\;ions/\textrm{cm}^2$<\TEX>. While the adhesion of the coated layer of SKD 61 was excllent regrdless of the implatation, the adhesion of the later of SKD 11 was apparently improved by the implantation. The overall wear properties of SKD 11 was better than that of SKD 61, and the best result was yielded at the ion dose of $2 \times 10^{15}\;ions/\textrm{cm}^2$<\TEX>.

  • PDF

Challenges in the Production of Thin Coatings at High Line Speed

  • Michel, Dubois;Luc, Warichet;Jose, Callegari
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Cost reduction of products is and will always be a key objective of industrials. However, it is well identified that the wiping process reaches its limits at high line speed in general and especially thin coatings. If wiping models predict that it is possible to reach 32-37 g/$m^2$ of pure Zinc at 180 m/min provided the nozzle to strip distance can be reduced to 6mm, the possibility to reach that process window industrially with sufficient robustness is debated. 3 key problems are reviewed and analyzed: Zinc splashing and liquid drop emissions of various forms, the production of skimming and the noise generated by the nozzles. The available data and models are firstly used to predict phenomena. Secondly, videos and pictures from the lines showing what really happens on the edges especially in case of a strip width change are analyzed. Whereas the predicted level of skimming to remove from the pot is expected very high, it turns out that the target may be very close to the full splashing phenomena and that the most critical industrial situation is related to strip specification changes. It is then expected that the industrial feasibility of the 32-37 g/$m^2$ at 180 m/min will depend strongly on the amount of incoming strip with the same width that can be processed continuously.

Electrochemical Characteristics of EDLC with various Organic Electrolytes (유기전해질에 따른 EDLC의 전기화학적 특성)

  • Yang Chun-Mo;Lee J.K.;Cho W.I.;Cho B.W.;Rim Byung-O
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.113-117
    • /
    • 2001
  • Specific capacitance and charge-discharge rate of EDLC using activated carbon electrode were affected by the compositions of electrolytes, the conditions of charge-discharge and physical properties of activated carbon materials. The activated carbon electrode was prepared by dip coating method. Charge-discharge test and electrochemical experiments were carried out for various kinds of organic electrolytes. Effects of charge and discharge current density on the specific capacitance were studied. Characteristics of leakage current, self-discharge and time-voltage curves in optimum conditions of organic electrolytes were compared with conventional $1M-Et_4NBF_4/PC$ electrolyte. The EDLC using MSP-20(specific surface area: $2000m^2/g$) electrode and $1M-LiPF_6/PC-DEC(1:1)$ was exhibited th highest specific capacitance of 130F/g and low polarization resistances. The EDLC using MSP-20 electrode at $1M-LiPF_6/PC-DEC(1:1)$ was small leak current of 0.0004A for 15min, long voltage retention of 0.8V after 100h and linear time-voltage curves with small IR-drop.

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad;Sotudeh-Gharebagh, Rahmat;Mostoufi, Navid
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.274-281
    • /
    • 2018
  • Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

  • Huh, Joo-Youl;Hwang, Min-Je;Shim, Seung-Woo;Kim, Tae-Chul;Kim, Jong-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1241-1248
    • /
    • 2018
  • The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) $SiO_2$-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at $460^{\circ}C$ and the variation in the contact angles (${\theta}_c$) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the $a-SiO_2$-covered steel exhibited nonreactive, nonwetting (${\theta}_c>90^{\circ}$) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the $a-SiO_2$ layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the $a-SiO_2$ layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and $SiO_2$, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

Thermal Emission Effect of Electronic Parts Using Carbon Materials (탄소물질을 이용한 전자부품의 열 방출효과)

  • Eom, Woon-Yong;Roh, Jae-Seung;Seo, Seung-Kuk;Ahn, Jai-Sang;Kang, Dong-Su;Kim, Suk-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.204-209
    • /
    • 2010
  • Recent high efficiency electronic devices have been found to have heat emission problems. As for LEDs, an excessive increase in the device temperature causes a drop of the luminous efficiency and circuit lifetime. Therefore, heat release in the limited space of such electronic parts is very important. This is a study of the possibility of using a coating of carbon materials as a solution for the thermal emission problem of electronic devices. Powdered carbon materials, cokes, carbon blacks, amorphous graphite, and natural flakes were coated with an organic binder on an aluminum sheet and the subsequent thermal emissivity was measured with an FT-IR spectrometer and was found to be in the range of $5{\sim}20\;{\mu}m$ at $50^{\circ}C$. The emissivity of the carbon materials coated on the aluminum sheet was shown to be over 0.8 and varied according to carbon type. The maximum thermal emissivity on the carbon black coated-aluminum surface was shown to be 0.877. The emissivity of the anodized aluminum sheets that were used as heat releasing materials of the electronic parts was reported to be in the range of 0.7~0.8. Therefore, the use of a coating of carbon material can be a potential solution that facillitates heat dissipation for electronic parts.

Comparison of Antibacterial Ability of Air Filter Media Treated with a Natural Antibacterial Agent by Three Treatment Methods (항균성 천연물질의 도포방법에 따른 에어필터 여재의 항균 특성 비교)

  • Park, Sun Young;Jung, Jae Hee;Hwang, Gi Byung;Bae, Gwi-Nam;Kim, Yong Pyo;Nho, Chu Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.125-134
    • /
    • 2013
  • Various antimicrobial technologies have been developed to inactivate bioaerosols in indoor environments. In this study, air filter media were treated with a natural antibacterial agent of Sophora flavescens in order to inactivate the bacteria collected on the air filter. Three treatment methods were applied to manufacture the test antibacterial air filter media: electrospray, nebulization and dip-coating methods. In case of electrospray and nebulization processes, the size distribution of aerosolized natural antibacterial agent was measured using a scanning mobility particle sizer. Staphylococcus epidermidis bacteria were aerosolized to test inactivation of the filter media treated with a natural antibacterial agent. The pressure drop and the antibacterial efficiency of the filter media increased with increasing the mass loading of natural antibacterial agent in each treatment method. The antibacterial efficiency per loaded antibacterial agent mass by the electrospray method was the highest and the filter treated by the dip-coating method was the lowest among three treatment methods.