DOI QR코드

DOI QR Code

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds

  • Foroughi-Dahr, Mohammad (Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran) ;
  • Sotudeh-Gharebagh, Rahmat (Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran) ;
  • Mostoufi, Navid (Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran)
  • Received : 2018.04.14
  • Accepted : 2018.07.28
  • Published : 2018.12.25

Abstract

Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.

Keywords

References

  1. K.B. Mathur, P. Gishler, AIChE J. 1 (1955) 157. https://doi.org/10.1002/aic.690010205
  2. M. Tzika, S. Alexandridou, C. Kiparissides, Powder Technol. 132 (2003) 16. https://doi.org/10.1016/S0032-5910(02)00345-5
  3. A.R. Fernandez-Akarregi, J. Makibar, G. Lopez, M. Amutio, M. Olazar, Fuel Process. Technol. 112 (2013) 48. https://doi.org/10.1016/j.fuproc.2013.02.022
  4. G. Lopez, M. Olazar, R. Aguado, J. Bilbao, Fuel 89 (2010) 1946. https://doi.org/10.1016/j.fuel.2010.03.029
  5. A. Adegoroye, N. Paterson, X. Li, T. Morgan, A.A. Herod, D.R. Dugwell, R. Kandiyoti, Fuel 83 (2004) 1949. https://doi.org/10.1016/j.fuel.2004.04.006
  6. H.B. Vuthaluru, D.K. Zhang, Fuel Process. Technol. 70 (2001) 41. https://doi.org/10.1016/S0378-3820(01)00130-8
  7. X. Ma, T. Kaneko, T. Tashimo, T. Yoshida, K. Kato, Chem. Eng. Sci. 55 (2000) 4643. https://doi.org/10.1016/S0009-2509(00)00090-7
  8. P.N. Kechagiopoulos, S.S. Voutetakis, A.A. Lemonidou, I.A. Vasalos, Catal. Today 127 (2007) 246. https://doi.org/10.1016/j.cattod.2007.05.018
  9. T.M. Zewail, N.S. Yousef, Alexandria Eng. J. 54 (2015) 83. https://doi.org/10.1016/j.aej.2014.11.008
  10. K.B. Mathur, N. Epstein, Adv. Chem. Eng. 9 (1974) 111.
  11. N. Epstein, J.R. Grace, Spouting of Particulate Solids, Springer, 1997 p. 532.
  12. K. Mathur, Spouted Beds, Academic Press, New York, NY, 1974.
  13. N. Epstein, J.R. Grace, Spouted and Spout-fluid Beds: Fundamentals and Applications, Cambridge University Press, 2010.
  14. X. Wang, H. Si, Q. Cheng, J. Kong, D. Zhao, J. Ind. Eng. Chem. 25 (2015) 258. https://doi.org/10.1016/j.jiec.2014.11.002
  15. J. Zhao, C.J. Lim, J.R. Grace, Chem. Eng. Sci. 42 (1987) 2865. https://doi.org/10.1016/0009-2509(87)87052-5
  16. R. Li, Z.P. Zhong, B.S. Jin, X.X. Jiang, C.H. Wang, A.J. Zheng, Can. J. Chem. Eng. 90 (2012) 1202. https://doi.org/10.1002/cjce.20623
  17. J. Plawsky, H. Littman, J. Paccione, Powder Technol. 199 (2010) 131. https://doi.org/10.1016/j.powtec.2009.12.009
  18. W. Zhong, M. Zhang, Powder Technol. 159 (2005) 121. https://doi.org/10.1016/j.powtec.2005.08.002
  19. H. Littman, D. Vukovic, F.K. Zdanski, Z. Grbavcic, Can. J. Chem. Eng. 52 (1974) 174.
  20. C. Heil, M. Tels, Can. J. Chem. Eng. 61 (1983) 331. https://doi.org/10.1002/cjce.5450610312
  21. D. Vukovic, D.E. Hadzismajlovic, Z.B. Grbavcic, R. Garic, H. Littman, Can. J. Chem. Eng. 62 (1984) 825. https://doi.org/10.1002/cjce.5450620613
  22. W. Zhong, X. Chen, M. Zhang, Chem. Eng. J. 118 (2006) 37. https://doi.org/10.1016/j.cej.2006.01.008
  23. H. Nagashima, T. Ishikura, M. Ide, Can. J. Chem. Eng. 89 (2011) 264. https://doi.org/10.1002/cjce.20403
  24. W. Zhong, M. Zhang, Powder Technol. 152 (2005) 52. https://doi.org/10.1016/j.powtec.2005.01.007
  25. G. Su, G. Huang, M. Li, C. Liu, Chem. Eng. J. 237 (2014) 277. https://doi.org/10.1016/j.cej.2013.10.029
  26. Y. Zhang, G. Huang, G. Su, Chem. Eng. J. 328 (2017) 645. https://doi.org/10.1016/j.cej.2017.07.071
  27. M. Wu, Q. Guo, L. Liu, Ind. Eng. Chem. Res. 53 (2014) 1999. https://doi.org/10.1021/ie4034494
  28. V.S. Sutkar, T.J. van Hunsel, N.G. Deen, V. Salikov, S. Antonyuk, S. Heinrich, J. Kuipers, Chem. Eng. Sci. 102 (2013) 524. https://doi.org/10.1016/j.ces.2013.08.046
  29. K.C. Link, E.U. Schlünder, Chem. Eng. Process. 36 (1997) 443. https://doi.org/10.1016/S0255-2701(97)00022-6
  30. H.Q. Che, M. Wu, J.M. Ye, W.Q. Yang, H.G. Wang, Flow Meas. Instrum. (2017). in press https://www.sciencedirect.com/science/article/pii/S0955598617300870.
  31. S. Shelukar, J. Ho, J. Zega, E. Roland, N. Yeh, D. Quiram, A. Nole, A. Katdare, S. Reynolds, Powder Technol. 110 (2000) 29. https://doi.org/10.1016/S0032-5910(99)00265-X
  32. L. Marmo, J. Food Eng. 79 (2007) 1179. https://doi.org/10.1016/j.jfoodeng.2006.04.034
  33. S. Sari, G. Kulah, M. Koksal, Exp. Therm. Fluid Sci. 40 (2012) 132. https://doi.org/10.1016/j.expthermflusci.2012.02.008
  34. S. Bose, R.H. Bogner, Pharm. Dev. Technol. 12 (2007) 115. https://doi.org/10.1080/10837450701212479
  35. M. Foroughi-Dahr, N. Mostoufi, R. Sotudeh-Gharebagh, J. Chaouki, Particle Coating in Fluidized Beds, Elsevier, 2017.
  36. M. Lustrik, Int. J. Pharm. 533 (2017) 377. https://doi.org/10.1016/j.ijpharm.2017.06.016
  37. N. Hampel, A. Buck, M. Peglow, E. Tsotsas, Chem. Eng. Sci. 86 (2013) 87. https://doi.org/10.1016/j.ces.2012.05.034
  38. F. Priese, B. Wolf, Powder Technol. 241 (2013) 149. https://doi.org/10.1016/j.powtec.2013.03.026
  39. P.W.S. Heng, L.W. Chan, E.S.K. Tang, Int. J. Pharm. 327 (2006) 26. https://doi.org/10.1016/j.ijpharm.2006.07.025
  40. A.V. Oppenheim, A.S. Willsky, S. Nawab, Signals and Systems, 2nd ed., Prentice Hall, New Jersey, 1997.
  41. F.N. Christensen, P. Bertelsen, Drug Dev. Ind. Pharm. 23 (1997) 451. https://doi.org/10.3109/03639049709148494
  42. S.R. Werner, J.R. Jones, A.H. Paterson, R.H. Archer, D.L. Pearce, Powder Technol. 171 (2007) 34. https://doi.org/10.1016/j.powtec.2006.08.015
  43. J.S. Bendat, A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, Wiley-Interscience, New York, 1980.
  44. L.A. Freitas, O.M. Dogan, C.J. Lim, J.R. Grace, D. Bai, Can. J. Chem. Eng. 82 (2004) 60.
  45. J. Xu, J. Tang, W. Wei, X. Bao, Can. J. Chem. Eng. 87 (2009) 274. https://doi.org/10.1002/cjce.20145
  46. S. El Mafadi, M. Hayert, D. Poncelet, Hem. Ind. 57 (2003) 641. https://doi.org/10.2298/HEMIND0312641e
  47. H. Nagashima, K. Suzukawa, T. Ishikura, Particuology 11 (2013) 475. https://doi.org/10.1016/j.partic.2013.01.007
  48. H. Nagashima, T. Ishikura, M. Ide, Korean J. Chem. Eng. 16 (1999) 688. https://doi.org/10.1007/BF02708153
  49. F.N. Christensen, P. Bertelsen, Drug Dev. Ind. Pharm. 23 (1997) 451. https://doi.org/10.3109/03639049709148494