Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.054

Characterization of flow properties of pharmaceutical pellets in draft tube conical spout-fluid beds  

Foroughi-Dahr, Mohammad (Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran)
Sotudeh-Gharebagh, Rahmat (Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran)
Mostoufi, Navid (Multiphase Systems Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 274-281 More about this Journal
Abstract
Experimental studies of the hydrodynamic performance of the draft tube conical spout-fluid bed (DCSF) were conducted using pharmaceutical pellets. The experiments were carried out in a DCSF consisted of two sections: (a) a conical section with the cross section of $120mm{\times}250mm$ and the height of 270 mm, (b) a cylindrical section with the diameter of 250 mm and the height of 600 mm. The flow characteristics of solids were investigated with a high speed camera and a pezoresistive absolute pressure transducer simultaneously. These characteristics revealed different flow regimes in the DCSF: packed bed at low gas velocities, fluidized bed in draft tube at higher gas velocities until minimum spouting, and spouted bed. The stable spouting was identified by the presence of two dominant frequencies of the power spectrum density of pressure fluctuation signature: (i) the frequency band 6-9 Hz and (ii) the frequency band 12-15 Hz. The pressure drops across the draft tube as well as the annulus measured in order to better recognize the flow structure in the DCSF. It was observed that the pressure drop across the draft tube, the pressure drop across the annulus, and the minimum spouting velocity increase with the increase in the height of draft tube and distance of the entrainment zone, but with the decrease in the distributor hole pitch. Finally, this study provided novel insight into the hydrodynamic of DCSF, particularly minimum spouting and stable spouting in the DCSF which contains valuable information for process design and scale-up of spouted bed equipment.
Keywords
Conical spout-fluid bed; Pharmaceutical pellets; Particle coating; Pressure drop; Minimum spouting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Heil, M. Tels, Can. J. Chem. Eng. 61 (1983) 331.   DOI
2 D. Vukovic, D.E. Hadzismajlovic, Z.B. Grbavcic, R. Garic, H. Littman, Can. J. Chem. Eng. 62 (1984) 825.   DOI
3 W. Zhong, X. Chen, M. Zhang, Chem. Eng. J. 118 (2006) 37.   DOI
4 H. Nagashima, T. Ishikura, M. Ide, Can. J. Chem. Eng. 89 (2011) 264.   DOI
5 W. Zhong, M. Zhang, Powder Technol. 152 (2005) 52.   DOI
6 G. Su, G. Huang, M. Li, C. Liu, Chem. Eng. J. 237 (2014) 277.   DOI
7 R. Li, Z.P. Zhong, B.S. Jin, X.X. Jiang, C.H. Wang, A.J. Zheng, Can. J. Chem. Eng. 90 (2012) 1202.   DOI
8 Y. Zhang, G. Huang, G. Su, Chem. Eng. J. 328 (2017) 645.   DOI
9 M. Wu, Q. Guo, L. Liu, Ind. Eng. Chem. Res. 53 (2014) 1999.   DOI
10 V.S. Sutkar, T.J. van Hunsel, N.G. Deen, V. Salikov, S. Antonyuk, S. Heinrich, J. Kuipers, Chem. Eng. Sci. 102 (2013) 524.   DOI
11 K.C. Link, E.U. Schlünder, Chem. Eng. Process. 36 (1997) 443.   DOI
12 H.Q. Che, M. Wu, J.M. Ye, W.Q. Yang, H.G. Wang, Flow Meas. Instrum. (2017). in press https://www.sciencedirect.com/science/article/pii/S0955598617300870.
13 S. Shelukar, J. Ho, J. Zega, E. Roland, N. Yeh, D. Quiram, A. Nole, A. Katdare, S. Reynolds, Powder Technol. 110 (2000) 29.   DOI
14 L. Marmo, J. Food Eng. 79 (2007) 1179.   DOI
15 S. Sari, G. Kulah, M. Koksal, Exp. Therm. Fluid Sci. 40 (2012) 132.   DOI
16 S. Bose, R.H. Bogner, Pharm. Dev. Technol. 12 (2007) 115.   DOI
17 M. Foroughi-Dahr, N. Mostoufi, R. Sotudeh-Gharebagh, J. Chaouki, Particle Coating in Fluidized Beds, Elsevier, 2017.
18 M. Lustrik, Int. J. Pharm. 533 (2017) 377.   DOI
19 N. Hampel, A. Buck, M. Peglow, E. Tsotsas, Chem. Eng. Sci. 86 (2013) 87.   DOI
20 F. Priese, B. Wolf, Powder Technol. 241 (2013) 149.   DOI
21 P.W.S. Heng, L.W. Chan, E.S.K. Tang, Int. J. Pharm. 327 (2006) 26.   DOI
22 A.V. Oppenheim, A.S. Willsky, S. Nawab, Signals and Systems, 2nd ed., Prentice Hall, New Jersey, 1997.
23 F.N. Christensen, P. Bertelsen, Drug Dev. Ind. Pharm. 23 (1997) 451.   DOI
24 S.R. Werner, J.R. Jones, A.H. Paterson, R.H. Archer, D.L. Pearce, Powder Technol. 171 (2007) 34.   DOI
25 J.S. Bendat, A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, Wiley-Interscience, New York, 1980.
26 L.A. Freitas, O.M. Dogan, C.J. Lim, J.R. Grace, D. Bai, Can. J. Chem. Eng. 82 (2004) 60.
27 J. Xu, J. Tang, W. Wei, X. Bao, Can. J. Chem. Eng. 87 (2009) 274.   DOI
28 S. El Mafadi, M. Hayert, D. Poncelet, Hem. Ind. 57 (2003) 641.   DOI
29 H. Nagashima, T. Ishikura, M. Ide, Korean J. Chem. Eng. 16 (1999) 688.   DOI
30 H. Nagashima, K. Suzukawa, T. Ishikura, Particuology 11 (2013) 475.   DOI
31 F.N. Christensen, P. Bertelsen, Drug Dev. Ind. Pharm. 23 (1997) 451.   DOI
32 G. Lopez, M. Olazar, R. Aguado, J. Bilbao, Fuel 89 (2010) 1946.   DOI
33 K.B. Mathur, P. Gishler, AIChE J. 1 (1955) 157.   DOI
34 M. Tzika, S. Alexandridou, C. Kiparissides, Powder Technol. 132 (2003) 16.   DOI
35 A.R. Fernandez-Akarregi, J. Makibar, G. Lopez, M. Amutio, M. Olazar, Fuel Process. Technol. 112 (2013) 48.   DOI
36 A. Adegoroye, N. Paterson, X. Li, T. Morgan, A.A. Herod, D.R. Dugwell, R. Kandiyoti, Fuel 83 (2004) 1949.   DOI
37 T.M. Zewail, N.S. Yousef, Alexandria Eng. J. 54 (2015) 83.   DOI
38 H.B. Vuthaluru, D.K. Zhang, Fuel Process. Technol. 70 (2001) 41.   DOI
39 X. Ma, T. Kaneko, T. Tashimo, T. Yoshida, K. Kato, Chem. Eng. Sci. 55 (2000) 4643.   DOI
40 P.N. Kechagiopoulos, S.S. Voutetakis, A.A. Lemonidou, I.A. Vasalos, Catal. Today 127 (2007) 246.   DOI
41 K.B. Mathur, N. Epstein, Adv. Chem. Eng. 9 (1974) 111.
42 N. Epstein, J.R. Grace, Spouting of Particulate Solids, Springer, 1997 p. 532.
43 K. Mathur, Spouted Beds, Academic Press, New York, NY, 1974.
44 N. Epstein, J.R. Grace, Spouted and Spout-fluid Beds: Fundamentals and Applications, Cambridge University Press, 2010.
45 X. Wang, H. Si, Q. Cheng, J. Kong, D. Zhao, J. Ind. Eng. Chem. 25 (2015) 258.   DOI
46 J. Zhao, C.J. Lim, J.R. Grace, Chem. Eng. Sci. 42 (1987) 2865.   DOI
47 H. Littman, D. Vukovic, F.K. Zdanski, Z. Grbavcic, Can. J. Chem. Eng. 52 (1974) 174.
48 J. Plawsky, H. Littman, J. Paccione, Powder Technol. 199 (2010) 131.   DOI
49 W. Zhong, M. Zhang, Powder Technol. 159 (2005) 121.   DOI