DOI QR코드

DOI QR Code

Thermal Emission Effect of Electronic Parts Using Carbon Materials

탄소물질을 이용한 전자부품의 열 방출효과

  • Eom, Woon-Yong (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Roh, Jae-Seung (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Seo, Seung-Kuk (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Ahn, Jai-Sang (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Kang, Dong-Su (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology) ;
  • Kim, Suk-Hwan (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology)
  • 엄운용 (금오공과대학교 신소재시스템공학부) ;
  • 노재승 (금오공과대학교 신소재시스템공학부) ;
  • 안재상 (금오공과대학교 신소재시스템공학부) ;
  • 강동수 (금오공과대학교 신소재시스템공학부) ;
  • 서승국 (금오공과대학교 신소재시스템공학부) ;
  • 김석환 (금오공과대학교 신소재시스템공학부)
  • Published : 2010.04.27

Abstract

Recent high efficiency electronic devices have been found to have heat emission problems. As for LEDs, an excessive increase in the device temperature causes a drop of the luminous efficiency and circuit lifetime. Therefore, heat release in the limited space of such electronic parts is very important. This is a study of the possibility of using a coating of carbon materials as a solution for the thermal emission problem of electronic devices. Powdered carbon materials, cokes, carbon blacks, amorphous graphite, and natural flakes were coated with an organic binder on an aluminum sheet and the subsequent thermal emissivity was measured with an FT-IR spectrometer and was found to be in the range of $5{\sim}20\;{\mu}m$ at $50^{\circ}C$. The emissivity of the carbon materials coated on the aluminum sheet was shown to be over 0.8 and varied according to carbon type. The maximum thermal emissivity on the carbon black coated-aluminum surface was shown to be 0.877. The emissivity of the anodized aluminum sheets that were used as heat releasing materials of the electronic parts was reported to be in the range of 0.7~0.8. Therefore, the use of a coating of carbon material can be a potential solution that facillitates heat dissipation for electronic parts.

Keywords

References

  1. I. -G. Lee, S. -W. Lee, K. -M. Kang and S. -Y. Chang, Kor. J. Mater. Res., 14, 870 (2004). https://doi.org/10.3740/MRSK.2004.14.12.870
  2. S. C. Lim, M. H. Lee and K. M. Kang, Kor. J. Mater. Res., 15, 829 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.12.829
  3. X. J. Hu, M. A. Panzer and K. E. Goodson, J. Heat Transfer, 129, 91 (2007). https://doi.org/10.1115/1.2401202
  4. S. P. Rawal, D. M. Barnett and D. E. Martin, Adv. Packag., 22, 379 (1999). https://doi.org/10.1109/6040.784489
  5. A. Castellazzia, M. Honsberg-Riedlb, G. Wachutka,Microelectron. J., 37, 145 (2006). https://doi.org/10.1016/j.mejo.2005.02.123
  6. C. T. Lynch, Practical Handbook of Materials Science, p.393, CRC press, Florida (1989).
  7. B. W. Gonser, Modern Materials, p.165, Academic Press, New York (1970).
  8. C. Y. Zhao, T. J. Lu and H. P. Hodson, Int. J. Heat Mass Tran., 47, 2927(2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.03.006
  9. J. Zueco and F. Alhama, J. Quant. Spec. Rad. Tran.,101, 73 (2006). https://doi.org/10.1016/j.jqsrt.2005.11.005
  10. M. Ball, H. Pinkerton and A. J. L. Harris, J. Volcanol. Geoth. Res., 173, 148 (2008). https://doi.org/10.1016/j.jvolgeores.2008.01.004
  11. L. Gardner and K. T. Ng, Fire Saf. J., 41, 185 (2006). https://doi.org/10.1016/j.firesaf.2005.11.009
  12. D. J. David, Thermochim. Acta, 4(1), 41 (1972). https://doi.org/10.1016/0040-6031(72)87061-8
  13. J. Yi, X. He, Y. Sun and Y. Li, Appl. Surf. Sci., 253,4361 (2007). https://doi.org/10.1016/j.apsusc.2006.09.063
  14. S. Bellayer, J. W. Gilman, S. S. Rahatekar, S. Bourbigot,X. Flambard, L. M. Hanssen, H. Guo and S. Kumar,Carbon, 45, 2417 (2007). https://doi.org/10.1016/j.carbon.2007.06.057
  15. M. Wissler, J. Power Sources, 156, 142 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.064
  16. H. Yu, G. Xu, X. Shen, X. Yan, C. Shao and C. Hu, Progr. Org. Coating., 66, 161 (2009). https://doi.org/10.1016/j.porgcoat.2009.07.002
  17. J. -S. Roh, J. -S. Ahn, B. -J. Kim, H. -Y. Jeon, S. -K. Seo,S. H. Kim and S. -W. Lee, J. Kor. Inst. Surf. Eng, 42, 95(2009). https://doi.org/10.5695/JKISE.2009.42.2.095
  18. G. W. Autio and E. Scala, Carbon, 6, 41 (1968). https://doi.org/10.1016/0008-6223(68)90049-3
  19. D. A, Jaworske, Thin Solid Films, 290, 278 (1996). https://doi.org/10.1016/S0040-6090(96)08969-9

Cited by

  1. Characteristics of Thermal Radiation Pastes Containing Graphite and Carbon Nanotube vol.49, pp.2, 2016, https://doi.org/10.5695/JKISE.2016.49.2.218