DOI QR코드

DOI QR Code

Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

  • Huh, Joo-Youl (Department of Materials Science and Engineering, Korea University) ;
  • Hwang, Min-Je (Department of Materials Science and Engineering, Korea University) ;
  • Shim, Seung-Woo (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Tae-Chul (Technical Research Laboratories, POSCO) ;
  • Kim, Jong-Sang (Technical Research Laboratories, POSCO)
  • Received : 2018.02.28
  • Accepted : 2018.04.29
  • Published : 2018.11.20

Abstract

The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) $SiO_2$-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at $460^{\circ}C$ and the variation in the contact angles (${\theta}_c$) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the $a-SiO_2$-covered steel exhibited nonreactive, nonwetting (${\theta}_c>90^{\circ}$) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the $a-SiO_2$ layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the $a-SiO_2$ layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and $SiO_2$, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

Keywords

References

  1. P. Volovitch, C. Allely, K. Ogle, Corros. Sci. 51, 1251 (2009) https://doi.org/10.1016/j.corsci.2009.03.005
  2. T. Prosek, N. Larche, M. Vlot, F. Goodwin, D. Thierry, Mater. Corros. 61, 412 (2010)
  3. A.E. Raab, E. Berger, J. Freudenthaler, F. Leomann, C. Walch, BHM Berg-und Huttenmannishe Monatshefte 157, 126 (2012) https://doi.org/10.1007/s00501-012-0066-z
  4. N. LeBozec, D. Thierry, A. Peltola, L. Luxem, G. Luckeneder, G. Marchiaro, M. Rohwerder, Mater. Corros. 64, 969 (2013) https://doi.org/10.1002/maco.201206959
  5. C. Yao, H. Lv, T. Zhu, W. Zheng, X. Yuan, J. Alloys Compd. 670, 239 (2016) https://doi.org/10.1016/j.jallcom.2016.02.026
  6. J. Mahieu, S. Claessens, B.C. De Cooman, Metall. Mater. Trans. A 32, 2905 (2001) https://doi.org/10.1007/s11661-001-1042-5
  7. E.M. Bellhouse, A.I.M. Mertens, J.R. McDermid, Mater. Sci. Eng. A 463, 147 (2007) https://doi.org/10.1016/j.msea.2006.09.117
  8. Y. Suzuki, T. Yamashita, Y. Sugimoto, S. Fujita, S. Yamaguchi, ISIJ Int. 49, 564 (2009) https://doi.org/10.2355/isijinternational.49.564
  9. Y.F. Gong, H.S. Kim, B.C. De Cooman, ISIJ Int. 48, 1745 (2008) https://doi.org/10.2355/isijinternational.48.1745
  10. Y.F. Gong, H.S. Kim, B.C. De Cooman, ISIJ Int. 49, 557 (2009) https://doi.org/10.2355/isijinternational.49.557
  11. T. Van De Putte, D. Loison, J. Penning, S. Claessens, Metall. Mater. Trans. A 39, 2875 (2008) https://doi.org/10.1007/s11661-008-9636-9
  12. Y. Kim, M. Shin, C. Tang, J. Lee, Metall. Mater. Trans. B 41, 872 (2010) https://doi.org/10.1007/s11663-010-9366-4
  13. L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, B.C. De Cooman, Metall. Mater. Trans. A 44, 362 (2013) https://doi.org/10.1007/s11661-012-1392-1
  14. M. Norden, M. Blumenau, T. Wuttke, K. Peters, Appl. Surf. Sci. 271, 19 (2013) https://doi.org/10.1016/j.apsusc.2012.12.103
  15. R. Khondker, A. Mertens, J.R. McDermid, Mater. Sci. Eng. A 463, 157 (2007) https://doi.org/10.1016/j.msea.2006.09.116
  16. R. Kavitha, J.R. McDermid, Surf. Coat. Technol. 212, 152 (2012) https://doi.org/10.1016/j.surfcoat.2012.09.038
  17. R. Sagl, A. Jarosik, D. Stifter, G. Angeli, Corros. Sci. 70, 268 (2013) https://doi.org/10.1016/j.corsci.2013.01.039
  18. M. Blumenau, M. Norden, J. Schulz, K. Peters, Surf. Coat. Technol. 206, 4194 (2012) https://doi.org/10.1016/j.surfcoat.2012.04.023
  19. H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, J. Hejazi, J. Mater. Process. Technol. 124, 345 (2002) https://doi.org/10.1016/S0924-0136(02)00225-X
  20. Y. Tanaka, M. Kajihara, Mater. Trans. 50, 2212 (2009) https://doi.org/10.2320/matertrans.M2009128
  21. P. Touassaint, L. Segers, R. Winand, M. Dubois, in Proc. Galvatech'98, ed. by N. Masuko, p. 141, ISIJ, Chiba, Japan (1998)
  22. L. Chen, R. Fourmentin, J. McDermid, in Proc. Galvatech'07, ed. by T. Tsuru, p. 321, ISIJ, Osaka, Japan (2007)
  23. M. Blumenau, M. Norden, F. Friedel, Surf. Coat. Technol. 205, 828 (2010) https://doi.org/10.1016/j.surfcoat.2010.07.123
  24. A. Bondi, Chem. Rev. 52, 417 (1953) https://doi.org/10.1021/cr60162a002
  25. E.M. Bellhouse, J.R. McDermid, Mater. Sci. Eng. A 491, 39 (2008) https://doi.org/10.1016/j.msea.2007.12.033