• Title/Summary/Keyword: Driving workload

Search Result 80, Processing Time 0.02 seconds

A Study on the Avionics Software Design for Redundancy (중복안정성 확보를 위한 항공전자 소프트웨어 설계방안 연구)

  • Lim, Sungshin;Jo, Hansang;Kim, Jongmoon;Song, Chaeil
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.21-26
    • /
    • 2014
  • The aircraft manufacturers are constantly driving to reduce manufacturing lead times and cost at the same time as the product complexity increases and technology continues to change. Integrated Modular Avionics (IMA) is a solution that allows the aviation industry to manage their avionics complexity. IMA defines an integrated system architecture that preserves the fault containment and 'separation of concerns' properties of the federated architectures. In software side, the air transport industry has developed ARINC 653 specification as a standardized Real Time Operating System (RTOS) interface definition for IMA. It allows hosting multiple applications of different software levels on the same hardware in the context of IMA architecture. This paper describes a study that provided the avionics software design for separation of fault and backup of core function to reduce workload of pilot with cost efficiency.

A Study on the Feasibility of Evaluating the Complexity of KTX Driving Tasks (KTX 운전직무에 대한 복잡도 평가 - 타당성 연구)

  • Park, Jin-Kyun;Jung, Won-Dea;Jang, Seung-Cheol;Ko, Jong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.744-750
    • /
    • 2009
  • According to the result of related studies, the degradation of human performance has been revealed as one of the most significant causes resulting in the safety of any human-involved system. This means that preventing the occurrence of accidents/incidents through avoiding the degradation of human performance is prerequisite for their successive operation. To this end, it is necessary to develop a plausible tool to evaluate the complexity of a task, which has been known as one of the decisive factors affecting the human performance. For this reason, in this paper, the complexity of tasks to be conducted by KTX drivers was quantified by TACOM measure that is enable to quantify the complexity of proceduralized tasks being used in nuclear power plants. After that, TACOM scores about the tasks of KTX drivers were compared with NASA-TLX scores that are responsible for the level of a subjective workload to be felt by KTX drivers.

Utilization of Subway Stations for Drone Logistics Delivery in the Post-Pandemic Era (포스트 팬데믹 시대 드론 물류배송을 위한 지하철 역사의 활용방안)

  • Moon, Sang-Won;Lee, Han-Byeol;Kang, Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.375-383
    • /
    • 2021
  • Due to COVID-19, people are building new lifestyles such as online shopping, online travel, and video conferencing by limiting going out and gatherings. Such rapid social change is causing new problems and deepening existing problems at the same time. In particular, as online consumption increases significantly, traffic congestion, air pollution, and the heavy workload of delivery drivers are deepening in the daily logistics industry, and face-to-face delivery is emerging as a new problem. With the advent of the 4th industrial revolution, unmanned delivery using drones, artificial intelligence, and autonomous driving is emerging as an alternative to the existing logistics industry. However, space for logistics facilities and securing additional logistics sites due to drone flight are emerging as new problems to be solved. Therefore, it is intended to link additional services such as logistics movement, storage, and delivery by utilizing the existing transportation business, the subway, as a space for a logistics facility for drones that can solve existing problems and new problems.

Characteristics of Job Stress Factors in Delivery Workers (택배종사자의 직무스트레스 요인 특성에 관한 연구)

  • Sejung Lee;Sangeun Jin;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.32-38
    • /
    • 2023
  • Job stress factors are factors that induce biological, psychological, and behavioral responses in individuals when they encounter mental and physical stimuli in the workplace. According to occupational safety and health standards, employers are responsible for the health consequences of job stress when workers engage in activities that result in high levels of physical fatigue and mental stress. Such activities include long working hours, shift work (including night shifts), driving vehicles, and operating precision machinery. Therefore, precautionary measures should be implemented. Following the COVID-19 epidemic, the logistics industry in Korea has experienced rapid growth owing to the shift from offline to online platforms facilitated by advanced digital infrastructure. Consequently, this study conducted a survey to analyze job stress factors among delivery workers. The survey utilized a Korean job stress factor assessment tool comprising 43 items and analyzed job stress factors considering the work characteristics of the courier business field obtained from responses provided by 421 courier workers nationwide. The survey analysis revealed that the physical environment, job demands, and job autonomy exhibited higher stress indices among Korean workers. Furthermore, the younger the age, the higher the stress on job demands, whereas the higher the age, the higher the stress on relationship conflict, job instability, and workplace culture. In addition, daytime delivery work was associated with higher stress levels in job demands and job instability compared with nighttime delivery work. These findings can serve as foundational data for reducing and preventing job stress among courier workers, whose workload has increased owing to the growth of the logistics industry.

Development a scheduling model for AGV dispatching of automated container terminals (자동화 컨테이너 터미널의 AGV 배차 스케줄링 모형 개발)

  • Jae-Yeong Shin;Ji-Yong Kwon;Su-Bin Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The automation of container terminals is an important factor that determines port competitiveness, and global advanced ports tend to strengthen their competitiveness through container terminal automation. The operational efficiency of the AGV, which is an essential transport equipment of the automated terminal, can improve the productivity of the automated terminal. The operation of AGVs in automated container terminals differs from that of conventional container terminals, as it is based on an automated system in which AGVs travel along designated paths and operate according to assigned tasks, requiring consideration of factors such as workload, congestion, and collisions. To prevent such problems and improve the efficiency of AGV operations, a more sophisticated model is necessary. Thus, this paper proposes an AGV scheduling model that takes into account the AGV travel path and task assignment within the terminal The model prevent the problem of deadlock and. various cases are generated by changing AGV algebra and number of tasks to create AGV driving situations and evaluate the proposed algorithm through algorithm and optimization analysis.

  • PDF

Ergonomic Approach through Process Analysis of Delivery Work (택배 배송 작업의 공정분석을 통한 인간공학적 접근 방안)

  • Sejung Lee;Sangeun Jin;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.1
    • /
    • pp.55-61
    • /
    • 2024
  • In response to the COVID-19 pandemic, the logistics industry in Korea has rapidly been expanding, with offline demand concentrating on online platforms owing to the development of digital infrastructure. This has increased the workload of courier drivers considerably, along with labor intensity. A delivery driver died recently from overwork due to the continuous increase in delivery volume, which raises social concerns. Delivery drivers work long hours, (over 12 hours) and are greatly affected by weather conditions, such as snow, rain, heat waves, and cold waves. In addition, they lack a fixed workplace; perform atypical work handling workpieces of various sizes, weights, and shapes; and spend a large amount of time driving as part of their work. This work involves a high level of tension and requires attention and concentration. Despite the frequency of industrial accidents in the courier industry, studies on safety and health to quantitatively analyze and systematize the work of courier workers are very scarce. Therefore, to define the work process necessary for investigating the harmful factors in delivery service and the work analysis, this study conducted interviews and on-site surveys to analyze the unit work of the delivery service by targeting delivery workers. In other words, a framework of unit work for work analysis was presented to enable research and analysis by considering the aforementioned characteristics of the courier industry. The process was broadly divided into work, transport, storage, delay, and inspection. Work was divided into loading, sorting, unloading, and door subcategories, and transportation was divided into vehicle, cart, and walking subcategories as well as 10 small processes. Moreover, 22 unit works were again drawn by conducting field surveys and interviews. The risk of unit work derived from this study was ergonomically evaluated, and the ergonomic analysis revealed that uploading and transportation were the most dangerous. The results of this study could be used as basic data for preventing industrial accidents among courier workers, whose work has increased with the logistics volume and the development of the logistics industry.

A Study on Evaluating Length Limit in Tangent Section of Highway Based on Driver's Workload (운전자 작업부하를 고려한 최장 허용 직선길이 결정에 관한 연구)

  • 정봉조;강정규;김주영;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • Driver's psychophysiological load is one of the key measures for evaluating the safety of the highway. The purpose of this study is to propose and to test the methodology of evaluating the length limit of tangent section using driver's psychophysiological load. Driver's psychophysiological data is represented by the data acquire by frontal and occipital lobe. In order to compare the differences between tangent segments and the orders, real road driving experiments were performed. We collected psychophysiological data during the operation of vehicles. The experimental data were analyzed using FFT (Fast Fourier Transform) and relative power spectrum tools. These routine produces the beta value which is a major factor in consideration of driver's condition. The results in this study are summarized as follows: (1) A new methodology of evaluating the length limit in tangent section of highway using driver's psychophysiological load was proposed. (2) It was observed that driver's work load at tangent section was three times lower than that at the other section types. The beta value at tangent section is 2.219, while that at general section is 0.821. (3) It was observed that the driver's work load was significantly dropped to 0.428 after the continuous driving of 4.2km tangent section. (4) Based on the experimental subjects(from 27 Years to 31). we suggest that 30 times of design speed(3.0 km) could be acceptable as the length limit of tangent section in highway rather than the Previous limit which is 20 times of design speed(2.0km).

Human-Powered Generator designed for Sustainable Driving (고출력 지속이 가능한 인체 구동 방식의 자가 발전기 개발)

  • Lim, Yoon-Ho;Yang, Yoonseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.135-142
    • /
    • 2015
  • Human-powered self-generating devices have been attractive with its operation characteristic independent from outer environment such as weather condition and wind speed. However, conventional self-generators have low electric power output due to their weakly-coupled electromagnetic structure. More importantly, rotary crank motion which is usually adopted by conventional self-generator to generate electricity requires specific skeletal muscles to maintain large torque circular motion and consequently, causes fatigue on those muscles before it can generate enough amount of electricity for any practical application. Without improvement in electric power output and usability, the human-powered self-generator could not be used in everyday life. This study aims to develop a human-powered self-generator which realized a strong electromagnetic coupling in a closed-loop tubular structure (hula-hoop shape) for easy and steady long-term driving as well as larger electric output. The performance and usability of the developed human-powered generator is verified through experimental comparison with a commercial one. Additionally, human workload which is a key element of a human-powered generator but not often considered elsewhere, is estimated based on metabolic energy expenditure measured respiratory gas analyzer. Further study will focus on output and portability enhancement, which can contribute to the continuous power supply of mobile equipments.

Experimental Research for CO2 Emission Estimation of Medium-Scale Excavator Reflecting Work Characteristics (작업 특성을 반영한 중규모 굴삭기의 CO2 배출량산정을 위한 실험적 연구)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.717-727
    • /
    • 2017
  • Researches on the emissions of greenhouse gases in the construction industry, which accounts for 40% of raw materials, 30% of energy consumption, and 30% of $CO_2$ emissions in the entire industry, are mainly focused on studies of LCA. However, it is assessed that $CO_2$ emissions are higher in construction sequence than in operation sequence. Also, it is considered that construction machinery using fossil fuel is a main factor causing environmental load in construction sequence. Therefore, this study analyzes the workload and engine RPM characteristics of the excavator which is the second largest number of registered construction machinery in Korea and the highest utilization rate in actual construction site. The excavator is divided into non-load states and load states where power is transmitted to the excavator. The exhaust gas is analyzed by a direct measurement method using PEMS equipment. $CO_2$ emissions are estimated by analyzing the relationship between RPM and exhaust emission characteristics according to the actual driving conditions. Additionally, we analyze the difference between $CO_2$ emissions of construction machine calculated by this study and $CO_2$ emissions calculated by using carbon emission coefficient.

The Comparative Study on Travel Behavior and Traffic Accident Characteristics on a Community Road - With Focus on Seoul Metropolitan City (생활도로에서의 교통행태와 교통사고특성에 관한 연구 - 서울특별시를 중심으로)

  • Lim, Joonbeom;Lee, Sooil;Choi, Jongchul;Joo, Sungkab
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.97-104
    • /
    • 2016
  • In Korea, the number of crash accident victims per 100,000 population is three times higher than the average of OECD. In particular, 60% of it occurs on the community road. Thus, this study intends to analyze the causes of such accidents through a pedestrian and vehicle traffic survey. The purpose is to establish practical safety enhancement measures for community roads. In recent years, lots of changes have occurred in the pedestrian environment. A traffic survey shows that 65% of pedestrians walk on the right and 17% of people use smart-phones while walking. An eye camera experiment shows that the operation load of drivers on the community roads is more than 4 times higher than those in urban roads. According to a speed survey, 62% of vehicles drive at 30km/h or above. The characteristics of accidents on community roads are as follows. First, the ratio of accidents on the edge of the road is 2.3 times as high as those on other roads. Second, when people walk on the right, the ratio of accidents is 2.5 times as high as that of walking on the left. Third, it becomes more dangerous when people cross the road from the right to the left. The majority of accidents is caused by unsafe driving (84.4%). When a vehicle makes a left turn, the likelihood of accidents is 2.3 times as high as those caused by a right turn. The ratio of accidents caused by vehicles going backwards is 14% among all accidents. In community roads, the focus of drivers should be at least 4 times higher than those on urban roads. Thus, walking in the opposite direction of vehicles and careless behaviors are highly likely lead to accidents.